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A toy example: Alien fruits
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 Consider alien fruits of various shapes

 Train classifier to distinguish safe fruits from dangerous ones

 Passive learning: Training data are given by uniform sampling and labeling

 Our setting
 Obtaining labels costly
 Unlabeled instances easily available
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A toy example: alien fruits
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 What if we sample fruits smartly instead of randomly?

 can be identified with using far fewer samples  
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Active learning 

 Active learning (AL) scenarios considered

General Goal: For a given budget of labeled training data, maximize learner’s 
accuracy by actively selecting which instances (feature vectors) to label (“query”). 

Pool-based samplingSelective samplingQuery synthesis

First to be considered,
often not applicable 

Ideal for online settings 
with streaming data

More general,
OUR FOCUS



Roadmap
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 Expected error minimization

 Conclusions

 Uncertainty sampling

 Expected error reduction
 Variance reduction
 Batch queries and submodularity

 Searching the hypothesis space

Burr Settles, “Active Learning”, Synthesis lectures on AI and ML, 2012.

 Query by disagreement
 Query by committee

 Cluster-based AL

 AL + semi-supervised learning

 A unified view
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Uncertainty sampling
 Most popular AL method: Intuitive, easy to implement

 Support vector classifier: uncertain about points close to decision boundary 

the key
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Measures of uncertainty

 Limitation: Utility scores based on output of single (possibly bad) hypothesis. 

Least confident:

Least margin:

Highest entropy:

where

 Uncertainty of label as modeled by              (e.g.                                         for l.r.) 
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Searching through the hypothesis space

 Instance points in      correspond to hyperplanes in     

• Max. margin methods (e.g. SVMs) lead to hypotheses in center of    

• Labeling instances close to decision hyperplane approx. bisects      

• Instances that greatly reduce the volume of      are of interest.  

 Version space             : Subset of all hypotheses consistent with tr. data   
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Query by disagreement

 “Store” version space implicitly with following trick

 One of the oldest AL algorithms [Cohn et al., ‘94]

 Limitations: Too complex, all controversial instances treated equally
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Query by committee

 Label instance most controversial among committee members 

 Key difference: VE cannot distinguish between case (a) and (b)

 Independently train a committee     of        hypotheses.      

Vote entropy:

Soft vote entropy:

KL divergence:
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Information theoretic interpretation

 Problem can be reformulated in more convenient form

 Ideally maximize information between label r.v.      and          

 Another alternative formulation (recall KL-based QBC)

Measures
disagreement

 Uncertainty sampling focuses on maximizing 
 QBC approximates second term with               and  

QBC approximates:
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Bound on label complexity 
 Label complexity for passive learning (  assume                 )

where               is expected error rate  and VC dimension      measures complexity of   

To achieve                                       one needs  

 QBD achieves logarithmically lower label complexity (if     does not explode )

 Dis. coef.    : Quantifies how fast the reg. of disagreement shrinks    
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Alien fruit example: A problematic case

 Generally: Both unc. sampling and QBD may suffer high generalization error 

 Candidate queries A and B both bisect      (appear equally informative)
 However, generalization error depends on the (ignored) distribution of input    
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Expected error reduction
 Ideally select query by minimizing expected generalization error  

 Less stringent objective: Expected log-loss 

 (Extremely) high complexity required to retrain model for each candidate 

Retrained
model  using 
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Variance reduction

 Focus on minimizing variance of predictions of unlabeled data 

 Learners expected error can be decomposed 

 Question: Can we minimize variance without retraining? 
 Design of experiments approach (typically for regression)  

Noise Bias Variance

 Noise is ind. of training data and bias is due to model class (e.g. linear model)
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Optimal experimental design 
 Fisher information matrix (FIM) of model 

 Can easily be adapted to minimize variance of predictions 

 FIM can be efficiently updated using the Woodberry matrix identity 

 Covariance of parameter estimates lower bounded by  

 A-optimal design:  

Additive property of FIM 

Fisher information ratio 

Fisher score 
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Batch queries and submodularity

 Maximizing the variance difference can be submodular 

 Submodularity property for functions over sets (            )

 Greedy approach on submodular function guarantees:

 Query a batch       of instances 
 Not necessarily the         individually best
 Key is to avoid correlated instances

 For linear regression FIM is ind. of     (offline computation !)      
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Density-weighted methods

 Information density heuristic
 Instances more representative of input distribution are promoted 

 Pathological case: Least confident (most uncertain) instance is an outlier
 B in fact more informative than A 

 Back to classification 

 Error and variance reduction less sensitive to outliers but costly

Information 
utility score 

(e.g. entropy)

Similarity measure 
(e.g. Eucledian distance)



19

Hierarchical cluster-based AL

 Assist AL by clustering the input space
 Obtain data and find initial coarse clustering
 Query instances from different clusters
 Iteratively refine clusters so that they become more “pure”
 Focus querying on more impure clusters 

 Working assumption: Cluster structure is correlated with label structure
 If not, above algorithm degrades to random sampling
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Active and semi-supervised learning

 Entropy regularization  complementary to error reduction w. log-loss 

 Self training is complementary to uncertainty sampling [Yarowsky, ‘95] 

 Two approaches are complementary
 AL minimizes labeling effort by querying most informative instances
 Semi-sup. learning  exploits latent structure (unlabeled) to improve accuracy

 Co-training complementary to QBD [Blum and Mitchel, ‘98]
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Unified view (I)

 Approximations lead to uncertainty sampling heuristic

 Since true label is unknown, one resorts to

 Ideal: Maximize total gain in information

Uncertainty sampling 
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Unified view (II)
 A different approximation

 Log-loss minimization and variance-reduction target the above measure

Depends on current state of     and is unchanged for all queries

 Approximation given by density weighted methods
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Overview



Cost of annotating
specific query

Cost of prediction

24

Practical considerations
 Real labeling costs 

 Skewed label distributions (class imbalance)

 Unreliable oracles (e.g. labels given by human experts)

 When AL is used training data are biased to model class
 If unsure about model, random sampling may be preferable

 Multi-task AL (multiple labels per instance)
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Conclusions

 Possible research directions
 Use of AL methods in learning over graphs (GSP, classification over graphs) 
 Use o MCMC and IS to approx. posterior in complex models (e.g. BMRF)

 AL allows for sample (label) complexity reduction
 Simple heuristics: Uncertainty sampling, QBD,QBC, cluster-based AL
 High complexity near-optimal methods: Expected error/variance reduction
 Encompasses optimal experimental design
 Linked to semi-supervised learning
 Information-theoretic interpretations
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