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A toy example: Alien fruits
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 Consider alien fruits of various shapes

 Train classifier to distinguish safe fruits from dangerous ones

 Passive learning: Training data are given by uniform sampling and labeling

 Our setting
 Obtaining labels costly
 Unlabeled instances easily available
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A toy example: alien fruits

3

 What if we sample fruits smartly instead of randomly?

 can be identified with using far fewer samples  
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Active learning 

 Active learning (AL) scenarios considered

General Goal: For a given budget of labeled training data, maximize learner’s 
accuracy by actively selecting which instances (feature vectors) to label (“query”). 

Pool-based samplingSelective samplingQuery synthesis

First to be considered,
often not applicable 

Ideal for online settings 
with streaming data

More general,
OUR FOCUS



Roadmap
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 Expected error minimization

 Conclusions

 Uncertainty sampling

 Expected error reduction
 Variance reduction
 Batch queries and submodularity

 Searching the hypothesis space

Burr Settles, “Active Learning”, Synthesis lectures on AI and ML, 2012.

 Query by disagreement
 Query by committee

 Cluster-based AL

 AL + semi-supervised learning

 A unified view
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Uncertainty sampling
 Most popular AL method: Intuitive, easy to implement

 Support vector classifier: uncertain about points close to decision boundary 

the key
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Measures of uncertainty

 Limitation: Utility scores based on output of single (possibly bad) hypothesis. 

Least confident:

Least margin:

Highest entropy:

where

 Uncertainty of label as modeled by              (e.g.                                         for l.r.) 
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Searching through the hypothesis space

 Instance points in      correspond to hyperplanes in     

• Max. margin methods (e.g. SVMs) lead to hypotheses in center of    

• Labeling instances close to decision hyperplane approx. bisects      

• Instances that greatly reduce the volume of      are of interest.  

 Version space             : Subset of all hypotheses consistent with tr. data   
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Query by disagreement

 “Store” version space implicitly with following trick

 One of the oldest AL algorithms [Cohn et al., ‘94]

 Limitations: Too complex, all controversial instances treated equally
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Query by committee

 Label instance most controversial among committee members 

 Key difference: VE cannot distinguish between case (a) and (b)

 Independently train a committee     of        hypotheses.      

Vote entropy:

Soft vote entropy:

KL divergence:
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Information theoretic interpretation

 Problem can be reformulated in more convenient form

 Ideally maximize information between label r.v.      and          

 Another alternative formulation (recall KL-based QBC)

Measures
disagreement

 Uncertainty sampling focuses on maximizing 
 QBC approximates second term with               and  

QBC approximates:
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Bound on label complexity 
 Label complexity for passive learning (  assume                 )

where               is expected error rate  and VC dimension      measures complexity of   

To achieve                                       one needs  

 QBD achieves logarithmically lower label complexity (if     does not explode )

 Dis. coef.    : Quantifies how fast the reg. of disagreement shrinks    
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Alien fruit example: A problematic case

 Generally: Both unc. sampling and QBD may suffer high generalization error 

 Candidate queries A and B both bisect      (appear equally informative)
 However, generalization error depends on the (ignored) distribution of input    
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Expected error reduction
 Ideally select query by minimizing expected generalization error  

 Less stringent objective: Expected log-loss 

 (Extremely) high complexity required to retrain model for each candidate 

Retrained
model  using 
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Variance reduction

 Focus on minimizing variance of predictions of unlabeled data 

 Learners expected error can be decomposed 

 Question: Can we minimize variance without retraining? 
 Design of experiments approach (typically for regression)  

Noise Bias Variance

 Noise is ind. of training data and bias is due to model class (e.g. linear model)
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Optimal experimental design 
 Fisher information matrix (FIM) of model 

 Can easily be adapted to minimize variance of predictions 

 FIM can be efficiently updated using the Woodberry matrix identity 

 Covariance of parameter estimates lower bounded by  

 A-optimal design:  

Additive property of FIM 

Fisher information ratio 

Fisher score 
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Batch queries and submodularity

 Maximizing the variance difference can be submodular 

 Submodularity property for functions over sets (            )

 Greedy approach on submodular function guarantees:

 Query a batch       of instances 
 Not necessarily the         individually best
 Key is to avoid correlated instances

 For linear regression FIM is ind. of     (offline computation !)      
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Density-weighted methods

 Information density heuristic
 Instances more representative of input distribution are promoted 

 Pathological case: Least confident (most uncertain) instance is an outlier
 B in fact more informative than A 

 Back to classification 

 Error and variance reduction less sensitive to outliers but costly

Information 
utility score 

(e.g. entropy)

Similarity measure 
(e.g. Eucledian distance)
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Hierarchical cluster-based AL

 Assist AL by clustering the input space
 Obtain data and find initial coarse clustering
 Query instances from different clusters
 Iteratively refine clusters so that they become more “pure”
 Focus querying on more impure clusters 

 Working assumption: Cluster structure is correlated with label structure
 If not, above algorithm degrades to random sampling



20

Active and semi-supervised learning

 Entropy regularization  complementary to error reduction w. log-loss 

 Self training is complementary to uncertainty sampling [Yarowsky, ‘95] 

 Two approaches are complementary
 AL minimizes labeling effort by querying most informative instances
 Semi-sup. learning  exploits latent structure (unlabeled) to improve accuracy

 Co-training complementary to QBD [Blum and Mitchel, ‘98]
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Unified view (I)

 Approximations lead to uncertainty sampling heuristic

 Since true label is unknown, one resorts to

 Ideal: Maximize total gain in information

Uncertainty sampling 
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Unified view (II)
 A different approximation

 Log-loss minimization and variance-reduction target the above measure

Depends on current state of     and is unchanged for all queries

 Approximation given by density weighted methods
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Overview



Cost of annotating
specific query

Cost of prediction
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Practical considerations
 Real labeling costs 

 Skewed label distributions (class imbalance)

 Unreliable oracles (e.g. labels given by human experts)

 When AL is used training data are biased to model class
 If unsure about model, random sampling may be preferable

 Multi-task AL (multiple labels per instance)
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Conclusions

 Possible research directions
 Use of AL methods in learning over graphs (GSP, classification over graphs) 
 Use o MCMC and IS to approx. posterior in complex models (e.g. BMRF)

 AL allows for sample (label) complexity reduction
 Simple heuristics: Uncertainty sampling, QBD,QBC, cluster-based AL
 High complexity near-optimal methods: Expected error/variance reduction
 Encompasses optimal experimental design
 Linked to semi-supervised learning
 Information-theoretic interpretations
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