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Problem statement - Motivation
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 Bayesian inference  (           :unknowns,             : data)
 Normalization

 Marginalization

 Expectation

Goal:  Draw samples from a given pdf

Impact of sampling :

 Optimization: non-convex multimodal objectives

 Statistical mechanics
 Penalized likelihood model selection

 Simulation of physical systems

Our focus



Roadmap
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Marcov chain Monte Carlo

 Conclusions

 Importance sampling
 Relation to Rejection Sampling
 Sequential Importance Sampling (Particle Filtering)

Motivation

 Metropolis-Hastings
 Gibbs sampling

 Rejection Sampling

 Basic Monte Carlo

C. Andrieu, N. de Freitas, A. Doucet and M. Jordan, “An Introduction to MCMC for Machine Learning,” 
Machine Learning, pp. 5-43, Jan 2003.
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The Monte Carlo principle

 Draw samples                    i.i.d from  

 Approximate          with     

 Approx. integrals          with tractable sums  

with

 unbiased for finite      with 

 Approx. the maximum of          as 

Challenge: What if           does not have a standard form (e.g. Gaussian) ?
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Rejection Sampling

 Instead of         , draw i.i.d samples from an “easy” 

 Proposal pdf         should satisfy:  

Rejection Sampling algorithm

 Accepted        sampled according to 

 Severe limitation in practice:        can be too large  
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Basics of Markov chains

 Discrete stochastic process       is a Marcov chain (MC) if    

 MC is homogeneous if       is time invariant     

 After    steps, probability of state        is: 

 MC reaches stationary distribution          if :      

 MC converges to a stationary distribution if
 Irreducible: All states are visited (transition graph connected)
 Aperiodic: Does not get trapped into cycles      
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Markov chain Monte Carlo

 Sufficient condition: The detailed balance condition (DBC)

 Goal: Construct MC with target           as stationary distribution  

 Continuous states
 Transition kernel:
 DBC remains the same

 Run MC to convergence and obtain non i.i.d samples
 Design            to achieve fast convergence (e.g. small mixing time)
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The Metropolis-Hastings sampler

 MH transition kernel: 

Rejection probability

 satisfies DBC              Admits          as stationary dist.   

 MH always aperiodic; irreducible if support of        includes support of  

 Special cases of MH
 Independent sampler: 
 Metropolis sampler: 

 Scale of           not needed! (recall                                  ) 
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Example of MH sampling

 Choice of proposal distribution is critical!

 Three different Gaussians as proposal distributions
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MCMC with mixture of transition kernels

 Intuition
 Local random walk reduces the number of rejections
 Global proposal helps discover other modes

 Key property
 Let               and              trans. kernels converge 
 also converges to    
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Example of MH with mixture of Kernels

Target:  

Proposal:  
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Experiment with mixture of Kernels
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Simulated Annealing
 Simple modification of the MH algorithm for global optimization

Example

 Simulates a non-homogeneous MC with 

 Intuition:                 concentrates around global max. of          as  
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Experiment with Simulated Annealing
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Cycles of MH kernels

 Multivariate state is split into      blocks
 Each block is updated separately

 Block correlated variables together for fast convergence

 Transition Kernel

 Trade-off on block size
 Small block size: Chain takes long time to explore space
 Large block size: Acceptance probability is small
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Gibbs sampling

 For               assume that we know  

 Gibbs sampling proposal distribution  

 Acceptance probability =1  

 Combined with MH if                  not easy    

 To sample Markov networks, condition on ``Markov Blanket’’
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Importance sampling - Basics

 Draw                  i.i.d from         to obtain:          

 Key idea: sample from         and weight with   

 Target          is approximated by

 Estimate            is unbiased and: 

 If scale of         unknown, set                        and normalize     
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Efficiency of importance sampling
 Proposal pdf         selected to minimize variance 

 Variance lower bound (using Jensen’s ineq.)  

 Optimum importance distribution

 IS can be super efficient!
 Generally difficult to sample
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RS as a special case of IS

 Recall the rejection sampling method 

 Define a new target distribution in 

 IS  with target             and proposal  

 Equivalent to RS if samples are used to obtain
 IS generally (and provably) more efficient for this purpose 

Y. Chen, “Another look at rejection sampling through importance sampling,” Statistic & Probability 
Letters, pp. 277-283, May 2005.
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Hidden markov model

 The hidden Marcov model

State transition model:

Observation model:

 Goal of  filtering: Approximate                 and 
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Sequential Importance Sampling (particle filtering)
 Target density:

 Importance density:

 How to sample from                     ? 

 At time           we have:

 Sample for                          :

 Importance weights :

 Augment                                  without changing the past (filtering)

Leave the past
unchanged
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Particle degeneracy – How to fix it 

Proof. The weight sequence is a Martingale random process

Variance of a martingale is always non-decreasing

 Practical fix: Resample particles after each iteration

A. Kong, J. S. Liu, and W. H. Wong, “Sequential imputations and Bayesian missing data problems,” J. 
of the American Statistical Association, pp. 278-288, March 1994.

Theorem:  The unconditional variance of the weights (with
interpreted as r.v.’s) increases with time. 

 Theoretical fix: Sample from optimal 

Martingale definition:

Rao-Blackwell
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The particle filter with resampling

 Many available methods for selection (resampling)
 Simplest is to ``clone ‘’        w.p.
 Particles that are not cloned are ``killed’’  
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The bootstrap particle filter

 Convenient for non-linear models with additive Gaussian noise
 Transition prob. and likelihood are both Gaussian (easy to sample)

 Simple to implement; Modular structure; Adheres parallelization

 Resampling is very critical! 
 Ensures that the particles ‘follow’ the target

 Simple, non-adaptive proposal distribution

A. Doucet, N. de Freitas and N. Gordon, “Sequential Monte Carlo Methods in Practice,” Springer, 2001.



 State: position                      and constant velocity

Example: target tracking
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Speed corrections
(Gaussian noise with cov. Q)



Distance and bearing measurements
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Uncorrelated Gaussian noise



Tracking 
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 Bootstrap PF with                 particles:  

 Sampling step (propagation of particles)

 Evaluation of weights (likelihood of particles)

 Randomized resampling w.p. 
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Result
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Conclusions

 Other MCMC derivatives 
 MCMC expectation-maximization algorithms
 Hybrid MC
 Slice sampler
 Reversible jump MCMC for model selection

 MCMC and IS: powerful, all-around tools for Bayesian inference 

 Applicable to any problem if tuned properly
 Proposal distributions
 Resampling schemes (in PF)


	Markov chain Monte Carlo sampling
	Problem statement - Motivation
	Roadmap
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Example: target tracking
	Distance and bearing measurements
	Tracking 
	Result
	Slide Number 29

