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Problem statement - Motivation
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 Bayesian inference  (           :unknowns,             : data)
 Normalization

 Marginalization

 Expectation

Goal:  Draw samples from a given pdf

Impact of sampling :

 Optimization: non-convex multimodal objectives

 Statistical mechanics
 Penalized likelihood model selection

 Simulation of physical systems

Our focus



Roadmap
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Marcov chain Monte Carlo

 Conclusions

 Importance sampling
 Relation to Rejection Sampling
 Sequential Importance Sampling (Particle Filtering)

Motivation

 Metropolis-Hastings
 Gibbs sampling

 Rejection Sampling

 Basic Monte Carlo

C. Andrieu, N. de Freitas, A. Doucet and M. Jordan, “An Introduction to MCMC for Machine Learning,” 
Machine Learning, pp. 5-43, Jan 2003.
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The Monte Carlo principle

 Draw samples                    i.i.d from  

 Approximate          with     

 Approx. integrals          with tractable sums  

with

 unbiased for finite      with 

 Approx. the maximum of          as 

Challenge: What if           does not have a standard form (e.g. Gaussian) ?
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Rejection Sampling

 Instead of         , draw i.i.d samples from an “easy” 

 Proposal pdf         should satisfy:  

Rejection Sampling algorithm

 Accepted        sampled according to 

 Severe limitation in practice:        can be too large  
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Basics of Markov chains

 Discrete stochastic process       is a Marcov chain (MC) if    

 MC is homogeneous if       is time invariant     

 After    steps, probability of state        is: 

 MC reaches stationary distribution          if :      

 MC converges to a stationary distribution if
 Irreducible: All states are visited (transition graph connected)
 Aperiodic: Does not get trapped into cycles      
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Markov chain Monte Carlo

 Sufficient condition: The detailed balance condition (DBC)

 Goal: Construct MC with target           as stationary distribution  

 Continuous states
 Transition kernel:
 DBC remains the same

 Run MC to convergence and obtain non i.i.d samples
 Design            to achieve fast convergence (e.g. small mixing time)
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The Metropolis-Hastings sampler

 MH transition kernel: 

Rejection probability

 satisfies DBC              Admits          as stationary dist.   

 MH always aperiodic; irreducible if support of        includes support of  

 Special cases of MH
 Independent sampler: 
 Metropolis sampler: 

 Scale of           not needed! (recall                                  ) 
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Example of MH sampling

 Choice of proposal distribution is critical!

 Three different Gaussians as proposal distributions
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MCMC with mixture of transition kernels

 Intuition
 Local random walk reduces the number of rejections
 Global proposal helps discover other modes

 Key property
 Let               and              trans. kernels converge 
 also converges to    
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Example of MH with mixture of Kernels

Target:  

Proposal:  
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Experiment with mixture of Kernels
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Simulated Annealing
 Simple modification of the MH algorithm for global optimization

Example

 Simulates a non-homogeneous MC with 

 Intuition:                 concentrates around global max. of          as  
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Experiment with Simulated Annealing
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Cycles of MH kernels

 Multivariate state is split into      blocks
 Each block is updated separately

 Block correlated variables together for fast convergence

 Transition Kernel

 Trade-off on block size
 Small block size: Chain takes long time to explore space
 Large block size: Acceptance probability is small
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Gibbs sampling

 For               assume that we know  

 Gibbs sampling proposal distribution  

 Acceptance probability =1  

 Combined with MH if                  not easy    

 To sample Markov networks, condition on ``Markov Blanket’’
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Importance sampling - Basics

 Draw                  i.i.d from         to obtain:          

 Key idea: sample from         and weight with   

 Target          is approximated by

 Estimate            is unbiased and: 

 If scale of         unknown, set                        and normalize     
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Efficiency of importance sampling
 Proposal pdf         selected to minimize variance 

 Variance lower bound (using Jensen’s ineq.)  

 Optimum importance distribution

 IS can be super efficient!
 Generally difficult to sample
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RS as a special case of IS

 Recall the rejection sampling method 

 Define a new target distribution in 

 IS  with target             and proposal  

 Equivalent to RS if samples are used to obtain
 IS generally (and provably) more efficient for this purpose 

Y. Chen, “Another look at rejection sampling through importance sampling,” Statistic & Probability 
Letters, pp. 277-283, May 2005.
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Hidden markov model

 The hidden Marcov model

State transition model:

Observation model:

 Goal of  filtering: Approximate                 and 
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Sequential Importance Sampling (particle filtering)
 Target density:

 Importance density:

 How to sample from                     ? 

 At time           we have:

 Sample for                          :

 Importance weights :

 Augment                                  without changing the past (filtering)

Leave the past
unchanged
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Particle degeneracy – How to fix it 

Proof. The weight sequence is a Martingale random process

Variance of a martingale is always non-decreasing

 Practical fix: Resample particles after each iteration

A. Kong, J. S. Liu, and W. H. Wong, “Sequential imputations and Bayesian missing data problems,” J. 
of the American Statistical Association, pp. 278-288, March 1994.

Theorem:  The unconditional variance of the weights (with
interpreted as r.v.’s) increases with time. 

 Theoretical fix: Sample from optimal 

Martingale definition:

Rao-Blackwell



23

The particle filter with resampling

 Many available methods for selection (resampling)
 Simplest is to ``clone ‘’        w.p.
 Particles that are not cloned are ``killed’’  
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The bootstrap particle filter

 Convenient for non-linear models with additive Gaussian noise
 Transition prob. and likelihood are both Gaussian (easy to sample)

 Simple to implement; Modular structure; Adheres parallelization

 Resampling is very critical! 
 Ensures that the particles ‘follow’ the target

 Simple, non-adaptive proposal distribution

A. Doucet, N. de Freitas and N. Gordon, “Sequential Monte Carlo Methods in Practice,” Springer, 2001.



 State: position                      and constant velocity

Example: target tracking
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Speed corrections
(Gaussian noise with cov. Q)



Distance and bearing measurements
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Uncorrelated Gaussian noise



Tracking 
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 Bootstrap PF with                 particles:  

 Sampling step (propagation of particles)

 Evaluation of weights (likelihood of particles)

 Randomized resampling w.p. 
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Result
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Conclusions

 Other MCMC derivatives 
 MCMC expectation-maximization algorithms
 Hybrid MC
 Slice sampler
 Reversible jump MCMC for model selection

 MCMC and IS: powerful, all-around tools for Bayesian inference 

 Applicable to any problem if tuned properly
 Proposal distributions
 Resampling schemes (in PF)
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