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Probabilistic graphical models

O Set of random variables X = [z122 ... 2 N]
> Graph G represents joint p(x)
» Nodes correspond to random variables

» Edges imply relations between rv’s

O Some applications
» Speech recognition, computer vision
» Decoding
» Gene reg. networks, disease diagnosis

0 Key idea: Graph models conditional independencies

» Two main tasks: Inference and Estimation

r

\.

Inference: Given observed Xg , obtain (marginal) conditionals p(a’:i|XS) j\v/i c S° J

r

Estimation: Given samples {x!)17_, estimate G (and thus p(x)) J

\.




Roadmap

O Bayesian networks basics

0 Markov Random Fields
O Continuous valued MRFs
» Inference using Harmonic solution
» Structure estimation through I-1 penalized MLE

O Binary valued MRFs (Ising model)
» Inference
= (Gaussian approximation — Random walk interpretation
= MCMC
» Structure estimation
= Pseudo MLE
» Logistic regression

1 Conclusions
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Directed Acyclical GMs (Bayesian networks)

Q Ordered Markov property : Xs L Xpred(s)\pa(s) | Xpa(s)
» Complete independence: Markov “Blanket” (Parents+chi|dren+co parents)

3 Joint pdf modeled as product of conditionals: p(x1.v|G) = HP Xt|Xpa(t))

0 Examples

Markov chain 2"d order Markov chain
5 T T
Nalve Bayes pa1) = p(xt) T plxelxe_1) p(xt.1) = pOxa.x2) [ | plxelxe—1. xt-2)
=2 t=3
I I9 I3 (Iz . Iq \IJ

Hidden Markov model
% ¢ e—p pyir.zi7) = plzeT)p(yitlziT)
T T
= [P(a)Hp(ZrIZr—ﬂ] [H p(yrlzy)]
Ya e s e Yr =2 =1

p(x15) = p(x1)p(x2|x1)p(xa|x1, X2) p(Xa|x1, X2, X3) P(x5 |1, X7, X3, 34)
= p(x1)p(xalx1)p(x3|x1)p(xa|x2, x3) p(xs5|x3)
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Basic building blocks of Bayesian nets
L The chain structure
p(x.y.2) = p(x)ply|x)p(zly) O—0—0

p(x)p(gggp(zm _ p(x-g();(zﬂ = p(xly)p(zly) [X Lz \Y]

d The tent structure @/6/}\@
p(x.y.z) = p(y)p(x|y)p(zly)

p(x,zly) =

plx.zly) = PELEL_ PUIREVRE) _ pixiyyply) (¥ L 2]Y]
O The V structure
p(x.y.z) = p(x)p(z)p(y|x. z)
_ p(x)p(z)p(y|x, z) rX ZYﬂ
p(x. zly) ) X L2V

Berkson’s Paradox (“explaining away”)

p(x, 2) = p(x)p(2) X1y
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Undirected GMs (Markov random fields)

O More natural in some domains (e.g. special statistics, relational data)
» Simple rule: Nodes not connected w. edge are conditionally independent

O Joint pdf parametrized and modeled as product of factors(not conditionals)

> Each factor ¥.(x.; 6.) or potential corresponds to a maximal clique ¢

O Hamersley-Clifford theorem

> p(x)satisfies the Cl properties of an undirected graph iff
p(x;0) = ﬁ@) [loce ¥e(xe50:) where Z(0) = > ] velxei60)
x ceC

O Example

1

p(yl0) = m’lﬁ?‘m(h;}’2=}’3)15"234{}’21}’3J’4)'H3’35U’3=}’5)

Partition Function: Z = Z-u'fua(h:yﬁ:}'3)15"234(}’2,}'3&4)-&1-'35(}’3.}'5)

y \ ' J

Generally NP-hard to compute
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Equivalence of DGMs and UGMs

O Moralization: Transition from directed to undirected GM
» Drop directionality and connect “unmarried” parents
» Information may be lost during transition (see example)

4 | 5\2
lost due to
this edge

Probabilistic Models
Cannot be represented Cannot be represented

by DAGS by UGMs

Graphical Models

Directed o Undirected
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MRFs with energy functions

O Clique potentials usually represented using an “energy” function FE.(x..)

(L/)(:(X(:; 9(:) — €XDP (_E(Xc; 9(:))

O Joint (Gibbs distribution)
p(x;0) =

exp( ZEXC )

O High probability states correspond to low energy configurations
0 Any MRF can be decomposed to pairwise potentials (and energy functions)

Zg@) exXp _Z(/(IH )90'

i,

p(x;0) =

O MRF is associative if ¢(¥;, ;) measures difference btw z; and z; and 6 > (
> Gaussian MRF: ¢(z;,x;) = (x; — x;)?
> Ising (binary +1,-1) model: ¢(vi, ;) = z;x;




Gaussian MRFs

O Joint Gaussian fully parametrized by covariance and mean

_ 1 ~S(@-p) "B N (a—p)
T 2N/2det(2)1/2°

O GMREF structure given by precision matrix (inv. Cov.)

p(x; X)

» Also viewed as the Laplacian of the graph
=31 =(6;))

Aet(©)2 _1(a—) O

O Assume for simplicity (and wlog) that 1« = O

X )

0 Inference: Given known ® and observed X, find P(Xse




Inference via Harmonic solution

0 Negative log-likelihood of joint

@ C eC @ c Xge
_ ¥ c 5 /) T ! - 818 S
IOEDP(XS ?Xb) X [XSC XS] [ @3?8“ 68,8 ] [ Xs ]

— Xg-("‘ G)SC:.SC XSC —~_ QXE-'@S?SC XSC _|_ Xg@sjsxs +XIZ::G)S(J:S G)S___LI;G)S:S(;XSC

—x1.O4 O 1O, ex,e

—1
[Xz,:, (e)SCngXSC + ng(é)s»?sCXSC _|_ Xz(%)sjsc (%)SC’SC(%)SC;SX'%_'
— log p(xe

[—FX? (@s’s — (":)s.sces_“ls“@f"c--"“) XS}—’
o O 5 O, ~ log p(x,)

-1 T 1
XS) = (Xsc + (")Scjsrz@(gcjsxs) @sc,sc (XSC + @3“,3(“-@8“,83(8)

[ p(xsc |XS) ~ N(—@;},S(« GSC,SXS —%ﬁ}—} “Harmonic”

d Conditional mean of Xsc contains all information from observed Xs

O Finally
— log p(x e

10
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GMRF structure estimation via maximum likelihood
Q Given {x™M}T_. goalis to estimate © and

_ . det(®)1/2 L e—p)TO(z—p)
p(x;, ©) = SN2 © 2(@—p) ®

—) 103 p(z; ©) = % 0g det(@)—%(m—u,)T@(m—u)+c

U Log-likelihood
T

L(O) = mﬁx% > (Iog det(®) — (m(t) - u)TG (a:(t) — u))

n=1

_ Lo~ () _ i\l o (D _ &
—Iogdet((a)—%Z(ac —p,) G)(sc —p,)

t=1

LS (20 3 (4® _ )"
= log det(®)—trace %;( —u,) (w —p,) )

S

[ ©,/7 = arg rgaz)( logdet(®) — trace(SO) J
—

11



' /1-penalized MLE of ©

© /7 = argmax logdet(®) — trace(SO)
©>0
Q Closed-form soluton: ©~1 — § =0 == (:)ML =81

Q O,s1, generally is full matrix

Q Idea: Add ¥ 1 constrain on to enforce (sparse) graph structure

[ @61 = arg gwird —log det(®)-4trace(SO©)+)\||0||1 J
—

P P
1®]]1 = Z Z 10,1
Q Problem is convex and for W = ®—! is equivalent to =1j=1

—~

W =argmax logdet(W) s.to |[|[W — S||lco < A
W0

Solvable via Graphical Lasso

O. Banerjee, L. El Ghaoui, and A. d'Aspremont, "Model selection through sparse maximum likelihood estimation for
multivariate Gaussian or binary data," J. Machine Learning Research, vol. 9, pp. 485-516, June 2008. 12



‘ Binary random variables sing model

Q Ising model for x € {—1,1}Y or = {0,1}V
P(x;®) = exp (:L'T@a: — Z(@)) 0;;, =0
Log partition function: Z(©) = log Z exp (mTQa:)
xe{—1,1}V
O Estimation: I-1 penalized maximum likelihood for &

© /7 = arg min Z(®) — trace(®8)+)||0][4
S =

1
O Problem: Z(®) combinatorialy complex to compute N /=

Q Two alternatives: Z(®) is upper-bounded or avoided

O Similar problem for inference: p(Xsc|xs) can only be approximated

13



‘The role of @ in Ising model

[Claim: 0;j =0 ¢ x; L ;| {Xy, k#iaj}]

. - _ 0 6f
QO Proof: consider x = (z;,x_;) and © = J
0, ©_;

P(xiza’sw—i)
P(zi=a,x_;)+P(z;=—a,x_;) Va € {—1,1}
_ 1

1—I{P(xiz—a,a':_i)/P(wi=a,$—z‘) ] =9

P(z; = alxz_;)

O Use the Ising model

_ exp(—ablz_; + %3359—@-’3—@ — 7(9)) — exp (—Qa,QTm )
exp(af);fa:_,i + %ZEZ,L@_%CB_Z — Z(@)) ’ '
d Plug ~ inthe expression above

1 1
P(z: = ) = —
(93@ a’|m Z) 1 _I_ exp(—2a9?$_@) 1 —|— exp(—2a Zj;/:g 913333)

14



Example: Image segmentation

0 Use 2-D HMM (Ising as hidden layer) to infer “meaning” of image pixels

Observed image

A
[ 1
)

bR

=

v

Hidden layer: Pixel Class ( water, sky, etc )

15



Inference via Gaussian field approximation

 Exact inference NP-hard

-
!

O Use surrogate continuous-values Gaussian random field: X ~ N (f1se. O e s
) ) 1
» Compute exact Harmonic solution: fise = —O o o Oye X

1 oy >1/2

0 else Vi €St

O Predictor of unknown labels via GMRF mean: &; = {

d Approximation of marginal posteriors: p (x; = 1l|xs) ~ E[%;| = u; Vi € 8¢

1 Random walk interpretation
» |Imagine particle performing a random walk on (unobserved) graph
> Let normalized Laplacian P = D '0,. .- be transition probability matrix
» Observed variables act as sink nodes where the walk ends
» Starting from node i, probability that walk ends in +1 node is [4;

16



Inference via MCMC

O Collect samples {ngz)}t’rzlfrom MC with p(xe

X, ) as stationary distribution

U Gibbs sampler: One variable (node) sampled at every round t ( the rest are fixed )
» EXxploits (sparse) conditional dependence structure of MRF
» Observed nodes used as (fixed) boundary conditions

xz(._t) ~ Ber(pgt))

ORI ORI 0
_ —1 , , 2 2
ot = { (1 +exp(—=2) e N QU"Y? l))) ;€SS %) Té b mg\/‘)

pla; = 1]X4e) & % Z?:l H{;xﬁ”:l} , VieS

U Experiments indicate Gibbs smpl offers better inference in rect. Ising models

O More sophisticated MCMC methods achieve faster mixing (e.g. Wolfs algorithm)

17



Towards estimation: Bounding the partition function

Q Goal: Find Z(©®) > Z(O©) computable with polynomial complexity

Z(@)zlog( 3 exp(af;TG)m))

xc{0,1}

O Consider partition 3B, ¢ {0,1}" suchthat = € By < ||z||[o =k

N
Z(®) = log (JXV: > exD(ng@a))) < log (Z > exp (max mT@m))

B
k=0 z By k=0 zEB; TPk

= log ( JZV: (j:) exp (qb(@)))

k=0

Q Computing ¢(®) = n’é%x z!Ox is still hard
rED

L. El Ghaoui, A. Gueye. “A Convex Upper Bound on the Log-Partition Function for Binary Graphical Models,” Journal of
Machine Learning Research, vol. 9, pp. 485-516, Mar. 2008. 18



Relaxation of the bound

d Relax ¢(©®) = maxz! Ox = maxtrace((—);c:cT)
xGBk :BEBk

1 Add redundant constrains

o(O®) = Xegn+63§c<egktrace(@X)
s.to X = zx!, 2lx =k, 1TmX1 =k°, diag(X) =1, rank(X) =1
0 Relax
Y(®) = max trace(OX)

X€8+,CC
s.to X =xzx!l, 2l =k, 1TX1 = k2, diag(X) = =

O Upper-bound % (O) > ¢(O)

N N N N _
) 7(0) < log (Z (k) exp(qﬁ(G))) < log (Z (k) exp(qp(@)))) = Z(O)

k=0 k=0

Q Claim: bound quality 0 < Z(®) — Z(®) < min ||© — I — A117)|4
s

19



Pseudo Maximum Likelihood

0 Wantto solve: @p,,; = arg min Z(©®) —trace(S©)+\||0||1

N
A _ N
©pyr = argmin log (Z (k) exp(¢(®))) —trace(SO©)+1[|0||;
k=0
O Dual
, T 1
H(O) = min t+ uk+ M2 s to( Dlag(V)—I—[iLI]j—)\].]_ e 51/) . 0
taMaV:)\ §V t

QO Substituting dual ¥ (©) above

N
A , N 5
® — a m lo e t k + \k —trace(SO®)+ )G
PML=3rg  min | g(ki ) (k) xp (t + pk + )) (§©)+A|[O]]1

1. T " = 0

: T 1
< to ( Diag(v) + ,ui + 111 -0 v )
2

20



Logistic regression for &

Q Goal: Estimate © while avoiding computation of Z(©) °

O Idea: consider node 2 and its connections
> Separate x = (x;, _;)
» Use x_; asinputand x; as output
> Logistic regression s parametric estimation of 109 P(x;|x_;)
> Estimate 6; as a byproduct

O Problem statement: re-write problem bellow for the Ising model

. T
6; = argmin— 3" log Py, (:{:Z =2Pjz_; = m§3)+)\||93-||1
i t=1

P. Ravikumar, M. J. Wainwright and J. Lafferty. High-dimensional Ising model selection using -regularized Iog.lstic
regression. To appear in the Annals of Statistics. Available at http://www.eecs.berkeley.edu

21



 Estimation of ©

1
1+ exp(—2z;07x_;)

O We have: P(x;|lx_;) =

B exp(z;0 x_;)
exp(:cz-&;rm_i) + eXD(—fCiQ;‘?ﬁ?—z‘)

O Taking the logarithm

‘ log P(xz|z—;) = 2;6] _;—log (exp(xngx_i) + exp(—miGiT:r:_Z-))

O Substituting the log-likelihood

T
0; = argmin — > logP (w@- = mgt)\w—i = m§3)+>~ll9illl
i t=1

T
=argmin 3 [iog (exp(e{"67z)) + exp(~2(P0T ")) — Do)+ 641
i ot=1

0 Convex problem

22



Conclusions

Q Graphical models

» Modeling pdfs using conditional dependencies
Undirected models (MRFs) naturally modeled by graphs
Inference in closed form for Gaussian MRFs
Estimation of GMRFs as Laplacian fitting problem

vV V YV VY

Inference and estimation approximations for binary MRFs (Ising model)

O Possible research directions
> Active sampling on binary MRFs using MCMC
> Active sampling for MRF structure estimation

T AT
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