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Probabilistic graphical models

 Key idea: Graph models conditional independencies
 Two main tasks: Inference and Estimation

Inference: Given observed , obtain (marginal) conditionals

 Set of random variables 
 Graph       represents joint
 Nodes correspond to  random variables
 Edges imply relations between rv’s

 Some applications
 Speech recognition, computer vision
 Decoding
 Gene reg. networks, disease diagnosis

Estimation: Given samples estimate (and thus )



Roadmap
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 Markov Random Fields
 Continuous valued MRFs

 Inference using Harmonic solution
 Structure estimation through l-1 penalized MLE

 Binary valued MRFs (Ising model)
 Inference

 Gaussian approximation – Random walk interpretation
 MCMC

 Structure estimation
 Pseudo MLE
 Logistic regression

 Conclusions

 Bayesian networks basics



Arbitrary

Directed Acyclical GMs (Bayesian networks)
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 Joint pdf modeled as product of conditionals: 

 Examples

 Ordered Markov property :
 Complete independence: Markov “Blanket” (Parents+children+co-parents)

Naïve Bayes
Markov chain 2nd order Markov chain

Hidden Markov model
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Basic building blocks of Bayesian nets
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 The chain structure  

 The tent structure  

 The V structure  

Berkson’s Paradox (“explaining away”)

Presenter
Presentation Notes
Climate (physical processes)



Undirected GMs (Markov random fields)
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 Example

Partition Function:

Generally NP-hard to compute

 More natural in some domains (e.g. special statistics, relational data)
 Simple rule: Nodes not connected w. edge are conditionally independent

 Hamersley-Clifford theorem
 satisfies the CI properties of an undirected graph iff

where

 Joint pdf parametrized and modeled as product of factors(not conditionals)
 Each factor                   or potential corresponds to a maximal clique         
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Equivalence of DGMs and UGMs
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 Moralization: Transition from directed to undirected GM
 Drop directionality and connect “unmarried’’ parents
 Information may be lost during transition (see example)

Cannot be represented 
by DAGs

Cannot be represented 
by UGMs

lost due to 
this edge
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MRFs with energy functions
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 High probability states correspond to low energy configurations

 Clique potentials usually represented using an “energy” function 

 Any MRF can be decomposed to pairwise potentials (and energy functions)

 Joint (Gibbs distribution)

 MRF is associative if                 measures difference btw      and     , and
 Gaussian MRF:
 Ising (binary +1,-1) model:           



Gaussian MRFs

9

 Joint Gaussian fully parametrized by covariance and mean

 GMRF structure given by precision matrix (inv. Cov.)
 Also viewed as the Laplacian of the graph 

 Inference: Given known        and observed       , find   

 Assume for simplicity (and wlog) that   



Inference via Harmonic solution
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 Negative log-likelihood of joint

 Finally

“Harmonic”

 Conditional mean of         contains all information from observed 



 Given                    , goal is to estimate       and                          

GMRF structure estimation via maximum likelihood 
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 Log-likelihood



-penalized MLE of  
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 generally is full matrix

 Closed-form solution: 

 Idea:  Add        constrain on to enforce (sparse) graph structure           

O. Banerjee, L. El Ghaoui, and A. d'Aspremont, "Model selection through sparse maximum likelihood estimation for 
multivariate Gaussian or binary data," J. Machine Learning Research, vol. 9, pp. 485-516, June 2008.

 Problem is convex and for                      is equivalent to

Solvable via Graphical Lasso



 Two alternatives:             is upper-bounded or avoided

 Problem:            combinatorialy complex to compute

 Estimation: l-1 penalized maximum likelihood for

 Ising model for                            or

Binary random variables
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Ising model

Log partition function:

 Similar problem for inference:                   can only be approximated



The role of       in Ising model
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Claim:

 Use the Ising model

 Plug       in the expression above

 Proof: consider                              and



Example: Image segmentation
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 Use 2-D HMM (Ising as hidden layer) to infer “meaning’’ of image pixels

Observed image

Hidden layer: Pixel Class ( water, sky, etc )



Inference via Gaussian field approximation
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 Approximation of marginal posteriors:

 Predictor of unknown labels via GMRF mean:

 Exact inference NP-hard

 Use surrogate continuous-values Gaussian random field: 
 Compute exact Harmonic solution: 

 Random walk interpretation
 Imagine particle performing a random walk on (unobserved) graph
 Let normalized Laplacian                          be transition probability matrix
 Observed variables act as sink nodes where the walk ends
 Starting from node i, probability that walk ends in +1 node is  



Inference via MCMC
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 More sophisticated MCMC methods achieve faster mixing (e.g. Wolfs algorithm) 

 Gibbs sampler: One variable (node) sampled at every round t ( the rest are fixed )
 Exploits (sparse) conditional dependence structure of MRF
 Observed nodes used as (fixed) boundary conditions 

 Collect samples                 from  MC with                   as stationary distribution 

 Experiments indicate Gibbs smpl offers better inference in rect. Ising models



Towards estimation: Bounding the partition function
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 Goal: Find                            computable with polynomial complexity

L. El Ghaoui, A. Gueye. “A Convex Upper Bound on the Log-Partition Function for Binary Graphical Models,” Journal of 
Machine Learning Research, vol. 9, pp. 485–516, Mar. 2008.

 Consider partition                            such that

 Computing                                        is still hard



 Upper-bound

Relaxation of the bound
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 Relax

 Add redundant constrains

 Relax

 Claim: bound quality



Pseudo Maximum Likelihood
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 Want to solve:

 Dual

 Substituting dual               above



Logistic regression for
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 Goal: Estimate      while avoiding computation of

 Idea: consider node    and its connections
 Separate
 Use          as input and        as output
 Logistic regression           parametric estimation of
 Estimate        as a byproduct

P. Ravikumar, M. J. Wainwright and J. Lafferty. High-dimensional Ising model selection using    -regularized logistic 
regression. To appear in the Annals of Statistics.  Available at http://www.eecs.berkeley.edu

 Problem statement: re-write problem bellow for the Ising model



Estimation of 
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 We have:

 Taking the logarithm

 Substituting the log-likelihood 

 Convex problem
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Conclusions

 Possible research directions
 Active sampling on binary MRFs using MCMC
 Active sampling for MRF structure estimation

 Graphical models 
 Modeling pdfs using conditional dependencies
 Undirected models (MRFs) naturally modeled by graphs
 Inference in closed form for Gaussian MRFs
 Estimation of GMRFs as Laplacian fitting problem
 Inference and estimation approximations for binary MRFs (Ising model)
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