
1

Markov Random Fields:
Inference and Estimation

SPiNCOM reading group
April 24th , 2017

Dimitris Berberidis

Ack: Juan-Andres Bazerque



2

Probabilistic graphical models

 Key idea: Graph models conditional independencies
 Two main tasks: Inference and Estimation

Inference: Given observed , obtain (marginal) conditionals

 Set of random variables 
 Graph       represents joint
 Nodes correspond to  random variables
 Edges imply relations between rv’s

 Some applications
 Speech recognition, computer vision
 Decoding
 Gene reg. networks, disease diagnosis

Estimation: Given samples estimate (and thus )



Roadmap
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 Markov Random Fields
 Continuous valued MRFs

 Inference using Harmonic solution
 Structure estimation through l-1 penalized MLE

 Binary valued MRFs (Ising model)
 Inference

 Gaussian approximation – Random walk interpretation
 MCMC

 Structure estimation
 Pseudo MLE
 Logistic regression

 Conclusions

 Bayesian networks basics



Arbitrary

Directed Acyclical GMs (Bayesian networks)
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 Joint pdf modeled as product of conditionals: 

 Examples

 Ordered Markov property :
 Complete independence: Markov “Blanket” (Parents+children+co-parents)

Naïve Bayes
Markov chain 2nd order Markov chain

Hidden Markov model
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Basic building blocks of Bayesian nets
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 The chain structure  

 The tent structure  

 The V structure  

Berkson’s Paradox (“explaining away”)
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Undirected GMs (Markov random fields)
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 Example

Partition Function:

Generally NP-hard to compute

 More natural in some domains (e.g. special statistics, relational data)
 Simple rule: Nodes not connected w. edge are conditionally independent

 Hamersley-Clifford theorem
 satisfies the CI properties of an undirected graph iff

where

 Joint pdf parametrized and modeled as product of factors(not conditionals)
 Each factor                   or potential corresponds to a maximal clique         
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Equivalence of DGMs and UGMs
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 Moralization: Transition from directed to undirected GM
 Drop directionality and connect “unmarried’’ parents
 Information may be lost during transition (see example)

Cannot be represented 
by DAGs

Cannot be represented 
by UGMs

lost due to 
this edge
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MRFs with energy functions
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 High probability states correspond to low energy configurations

 Clique potentials usually represented using an “energy” function 

 Any MRF can be decomposed to pairwise potentials (and energy functions)

 Joint (Gibbs distribution)

 MRF is associative if                 measures difference btw      and     , and
 Gaussian MRF:
 Ising (binary +1,-1) model:           



Gaussian MRFs
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 Joint Gaussian fully parametrized by covariance and mean

 GMRF structure given by precision matrix (inv. Cov.)
 Also viewed as the Laplacian of the graph 

 Inference: Given known        and observed       , find   

 Assume for simplicity (and wlog) that   



Inference via Harmonic solution
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 Negative log-likelihood of joint

 Finally

“Harmonic”

 Conditional mean of         contains all information from observed 



 Given                    , goal is to estimate       and                          

GMRF structure estimation via maximum likelihood 
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 Log-likelihood



-penalized MLE of  
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 generally is full matrix

 Closed-form solution: 

 Idea:  Add        constrain on to enforce (sparse) graph structure           

O. Banerjee, L. El Ghaoui, and A. d'Aspremont, "Model selection through sparse maximum likelihood estimation for 
multivariate Gaussian or binary data," J. Machine Learning Research, vol. 9, pp. 485-516, June 2008.

 Problem is convex and for                      is equivalent to

Solvable via Graphical Lasso



 Two alternatives:             is upper-bounded or avoided

 Problem:            combinatorialy complex to compute

 Estimation: l-1 penalized maximum likelihood for

 Ising model for                            or

Binary random variables
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Ising model

Log partition function:

 Similar problem for inference:                   can only be approximated



The role of       in Ising model
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Claim:

 Use the Ising model

 Plug       in the expression above

 Proof: consider                              and



Example: Image segmentation
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 Use 2-D HMM (Ising as hidden layer) to infer “meaning’’ of image pixels

Observed image

Hidden layer: Pixel Class ( water, sky, etc )



Inference via Gaussian field approximation
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 Approximation of marginal posteriors:

 Predictor of unknown labels via GMRF mean:

 Exact inference NP-hard

 Use surrogate continuous-values Gaussian random field: 
 Compute exact Harmonic solution: 

 Random walk interpretation
 Imagine particle performing a random walk on (unobserved) graph
 Let normalized Laplacian                          be transition probability matrix
 Observed variables act as sink nodes where the walk ends
 Starting from node i, probability that walk ends in +1 node is  



Inference via MCMC
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 More sophisticated MCMC methods achieve faster mixing (e.g. Wolfs algorithm) 

 Gibbs sampler: One variable (node) sampled at every round t ( the rest are fixed )
 Exploits (sparse) conditional dependence structure of MRF
 Observed nodes used as (fixed) boundary conditions 

 Collect samples                 from  MC with                   as stationary distribution 

 Experiments indicate Gibbs smpl offers better inference in rect. Ising models



Towards estimation: Bounding the partition function
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 Goal: Find                            computable with polynomial complexity

L. El Ghaoui, A. Gueye. “A Convex Upper Bound on the Log-Partition Function for Binary Graphical Models,” Journal of 
Machine Learning Research, vol. 9, pp. 485–516, Mar. 2008.

 Consider partition                            such that

 Computing                                        is still hard



 Upper-bound

Relaxation of the bound
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 Relax

 Add redundant constrains

 Relax

 Claim: bound quality



Pseudo Maximum Likelihood
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 Want to solve:

 Dual

 Substituting dual               above



Logistic regression for
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 Goal: Estimate      while avoiding computation of

 Idea: consider node    and its connections
 Separate
 Use          as input and        as output
 Logistic regression           parametric estimation of
 Estimate        as a byproduct

P. Ravikumar, M. J. Wainwright and J. Lafferty. High-dimensional Ising model selection using    -regularized logistic 
regression. To appear in the Annals of Statistics.  Available at http://www.eecs.berkeley.edu

 Problem statement: re-write problem bellow for the Ising model



Estimation of 
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 We have:

 Taking the logarithm

 Substituting the log-likelihood 

 Convex problem
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Conclusions

 Possible research directions
 Active sampling on binary MRFs using MCMC
 Active sampling for MRF structure estimation

 Graphical models 
 Modeling pdfs using conditional dependencies
 Undirected models (MRFs) naturally modeled by graphs
 Inference in closed form for Gaussian MRFs
 Estimation of GMRFs as Laplacian fitting problem
 Inference and estimation approximations for binary MRFs (Ising model)
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