Adaptive Techniques for Learning over Graphs

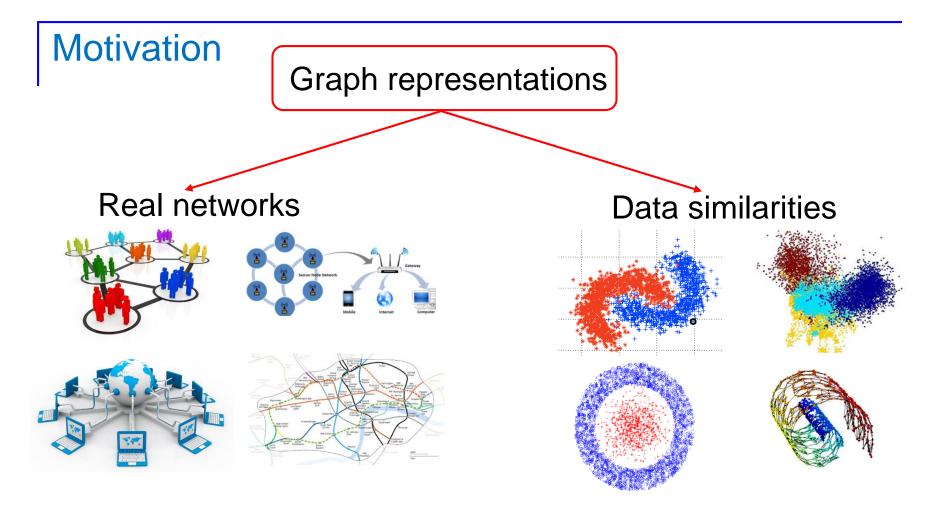
PhD Final Oral Exam

Dimitris Berberidis

Dept. of ECE and Digital Tech. Center, University of Minnesota

Acknowledgements: Profs G. B. Giannakis, G. Karypis, Z. Zhang, and M. Hong

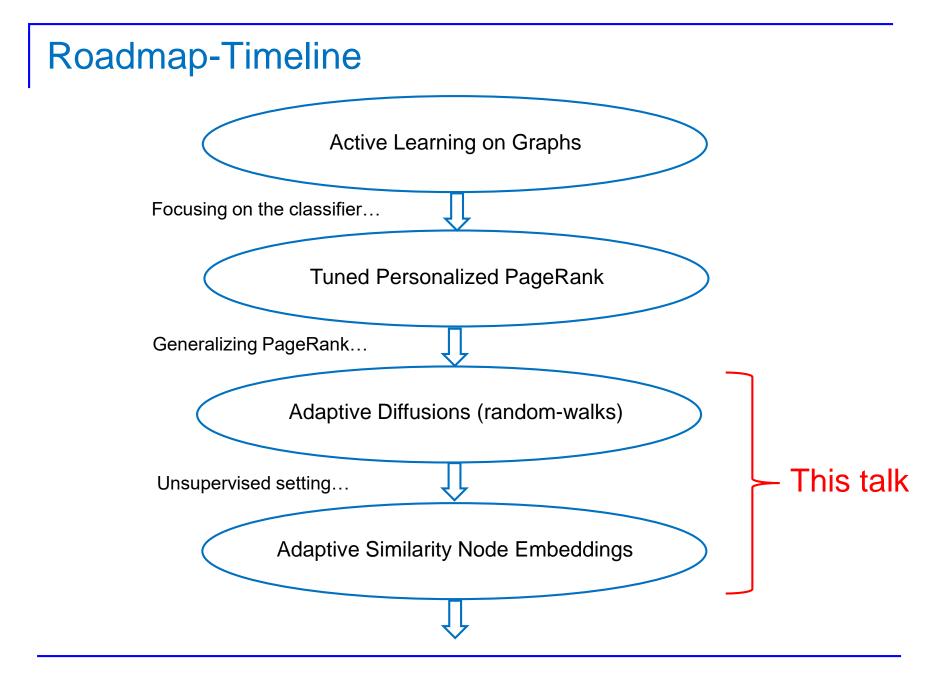
Minneapolis, Jan. 25, 2019



Objectives: Learn-over/ mine/ manipulate real world graphs

□ Challenges

- Graphs can be huge with few/none/unreliable labels available
- Graphs from different sources may have different properties



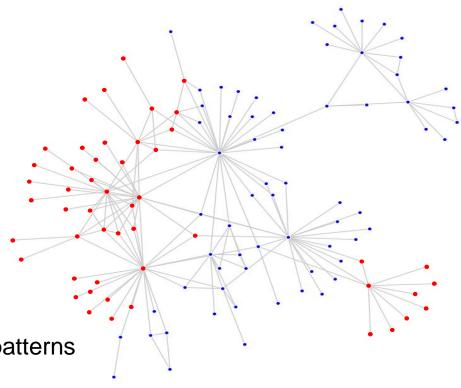
Semi-supervised node classification

 \Box Graph $\mathcal{G} := \{\mathcal{V}, \mathcal{E}\}$

 \succ Weighted adjacency matrix A

- \succ Label $y_i \in \mathcal{Y}$ per node v_i
- Topology given or identifiable
- Main assumption
 - Graph topology relevant to label patterns

Goal: Given labels on $\mathcal{L} \subseteq \mathcal{V}$ learn unlabeled nodes $\mathcal{U} := \mathcal{V} \setminus \mathcal{L}$



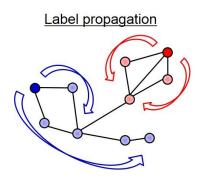
Work in context

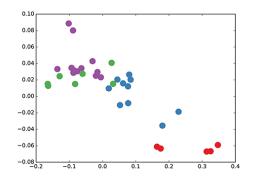
Non-parametric semi-supervised learning (SSL) on graphs

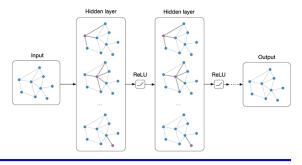
- Graph partitioning [Joachims et al '03]
- Manifold regularization [Belkin et al '06]
- Label propagation [Zhu et al'03, Bengio et al'06]
- Bootstrapped label propagation [Cohen'17]
- Competitive infection models [Rosenfeld'17]
- Node embedding + classification of vectors
 - Node2vec [Grover et al '16]
 - Planetoid [Yang et al '16]
 - Deepwalk [Perozzi et al '14]

Graph convolutional networks (GCNs)

[Atwood et al '16], [Kipf et al '16]







Random walks for SSL

lacksquare Consider a Random Walk on $\,{\cal G}:=\{{\cal V},{\cal E}\}$ with transition matrix $\,\,{f H}:={f A}{f D}^{-1}$

K-step "landing" prob. of a walk "rooted" on the labeled nodes of each class.

$$\mathbf{p}_{c}^{(k)} = \mathbf{H}^{k} \mathbf{v}_{c} \qquad [\mathbf{v}_{c}]_{i} = \begin{cases} 1/|\mathcal{L}_{c}|, & i \in \mathcal{L}_{c} \\ 0, & \text{else} \end{cases}$$
$$\mathcal{L}_{c} := \{i \in \mathcal{L} : y_{i} = c\}$$

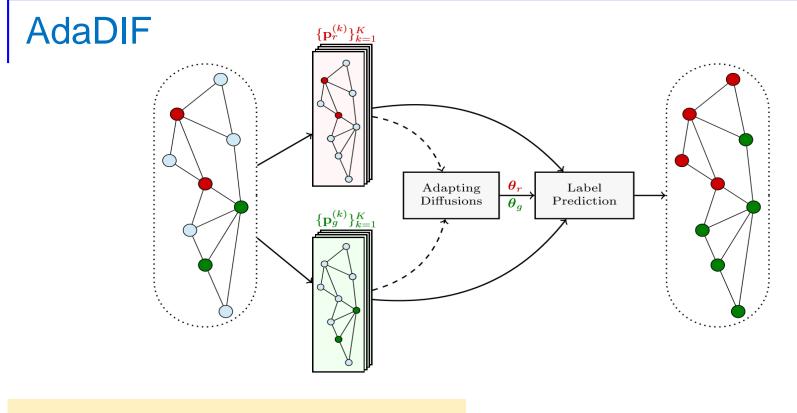
Use the landing probabilities to create an "influence" vector for each class

$$\mathbf{f}_{c}(\boldsymbol{\theta}) := \sum_{k=1}^{K} \theta_{k} \mathbf{p}_{c}^{(k)} = \mathbf{P}_{c}^{(K)} \boldsymbol{\theta},$$

☐ Classify the unlabeled nodes as $\hat{y}_i(\theta) := rg \max_{c \in \mathcal{Y}} [\mathbf{f}_c(\theta)]_i$

Fixed θ: Pers. PageRank (PPR) [Lin'10], Heat kernel (HK) [Chung'07]

Our contribution: Graph- and label-adaptive selection of θ_c



 $\hat{\boldsymbol{\theta}}_{c} = \arg\min_{\boldsymbol{\theta}\in\mathcal{S}^{K}} \ell(\mathbf{y}_{\mathcal{L}_{c}}, \mathbf{f}_{c}(\boldsymbol{\theta})) + \lambda R(\mathbf{f}_{c}(\boldsymbol{\theta})) \qquad \mathcal{S}^{K} := \{\boldsymbol{\theta}\in\mathbb{R}^{K}: \ \boldsymbol{\theta}\geq\mathbf{0}, \ \mathbf{1}^{\mathsf{T}}\boldsymbol{\theta}=1\}$ Normalized label

indicator vector

$$\ell(\mathbf{y}_{\mathcal{L}_c}, \mathbf{f}) = \sum_{i \in \mathcal{L}} \frac{1}{d_i} (y_i - f_i)^2 = (\bar{\mathbf{y}}_{\mathcal{L}_c} - \mathbf{f})^\mathsf{T} \mathbf{D}_{\mathcal{L}}^{-1} (\bar{\mathbf{y}}_{\mathcal{L}_c} - \mathbf{f})$$
$$R(\mathbf{f}) = \frac{1}{2} \sum_{i \in \mathcal{V}} \sum_{j \in \mathcal{N}_i} \left(\frac{f_i}{d_i} - \frac{f_j}{d_j} \right)^2 = \mathbf{f}^\mathsf{T} \mathbf{D}^{-1} \mathbf{L} \mathbf{D}^{-1} \mathbf{f}$$

AdaDIF complexity and the choice of K

Complexity **linear** in nnz(**H**) and **quadratic** in K.

Theorem For any diffusion-based classifier with coefficients constrained to a probability simplex of appropriate dimensions, it holds that

$$K_{\gamma} \leq \frac{1}{\mu'} \log \left[\frac{2\sqrt{d_{\max}}}{\gamma} \left(\sqrt{\frac{1}{d_{\min}} |\mathcal{L}_{-}|} + \sqrt{\frac{1}{d_{\min}} |\mathcal{L}_{+}|} \right) \right]$$

where $d_{\min +} := \min_{i \in \mathcal{L}_+} d_i$, $d_{\min -} := \min_{j \in \mathcal{L}_-} d_j$, $d_{\max} := \max_{i \in \mathcal{V}} d_i$ $\mu' := \min\{\mu_2, 2 - \mu_N\}$, with $\{\mu_n\}_{n=1}^N$ the eigenvalues of the normalized graph Laplacian in ascending order.

Main message:

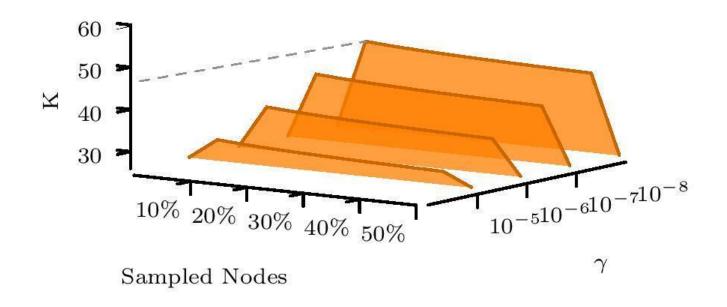
- > Increasing K does not help distinguishing between classes
- > For most graphs a very small K suffices \rightarrow AdaDIF will be very efficient!
- ➢ If K needs to be large: Dictionary of Diffusions $C := [c_1 \cdots c_D] \in \mathbb{R}^{K \times D}$

$$\mathbf{f}_{c}(\boldsymbol{\theta}) = \sum_{k=1}^{K} a_{k}(\boldsymbol{\theta}) \mathbf{p}_{c}^{(k)} = \mathbf{P}_{c}^{(K)} \mathbf{a}(\boldsymbol{\theta}) = \mathbf{P}_{c}^{(K)} \mathbf{C}\boldsymbol{\theta}$$

> Trading flexibility for complexity **linear** in both **nnz(H)** and K

Bound in practice

BlogCatalog



Real data tests

Competing baselines

- DeepWalk, Node2vec
- Planetoid, GCNN
- ➢ HK, PPR, Label Prop. (LP)

Evaluation metrics

Graph	$ \mathcal{V} $	$ \mathcal{E} $	$ \mathcal{Y} $	Multi-label
Citeseer	3,233	9,464	6	No
Cora	2,708	10,858	7	No
PubMed	19,717	88,676	3	No
PPI (H. Sapiens)	3,890	76,584	50	Yes
Wikipedia	4,733	184,182	40	Yes
BlogCatalog	10,312	333,983	39	Yes

F1 score = $2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}} = \frac{2 \cdot \text{true positive}}{2 \cdot \text{true positive} + \text{false positive} + \text{false negative}}$

- Micro-F1: node-centric accuracy measure
- Macro-F1: class-centric accuracy measure
- Cross-validation for PPR (α), HK (t), Node2vec, AdaDIF (λ , mode)
 - Extra labels needed by Planetoid / GCNN for early stopping
- □ HK and PR run to convergence -- AdaDIF relies just on *K*=20

Multiclass graphs

State-of-the-art performance

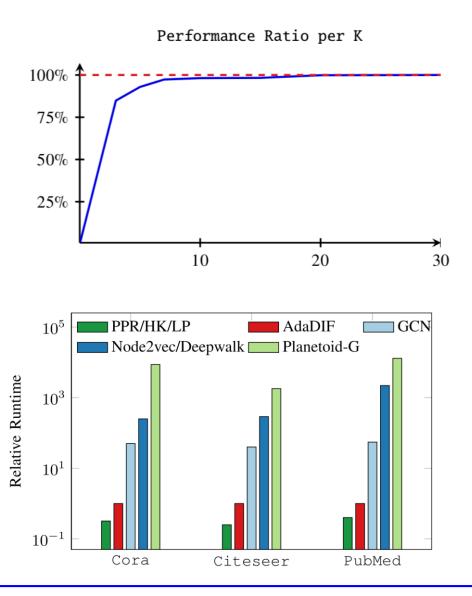
Large margin improvement over Citeseer

	Graph		Cora			Citeseer			PubMed			
	$ \mathcal{L}_c $	5	10	20	5	10	20	5	10	20		
	AdaDIF	67.5 ± 2.2	71.0 ± 2.0	73.2 ± 1.2	42.3 ± 4.4	49.5 ± 3.0	53.5 ± 1.2	62.0 ± 6.0	68.5 ± 4.5	74.1 ± 1.7		
17	PPR	67.1 ± 2.3	70.2 ± 2.1	72.8 ± 1.5	41.1 ± 5.2	48.7 ± 2.5	52.5 ± 0.9	63.1 ± 1.1	69.5 ± 3.8	74.1 ± 1.8		
0-F	HK	67.0 ± 2.5	70.5 ± 2.5	72.9 ± 1.2	40.0 ± 5.6	48.0 ± 2.4	51.8 ± 1.1	62.0 ± 0.6	68.3 ± 4.7	74.0 ± 1.8		
Micro	LP	61.8 ± 3.5	66.3 ± 4.2	71.0 ± 2.7	40.7 ± 2.5	48.0 ± 3.7	51.9 ± 1.3	56.2 ± 11.0	68.0 ± 6.1	69.3 ± 2.4		
M	Node2vec	68.9 ± 1.9	70.2 ± 1.6	72.4 ± 1.2	39.2 ± 3.7	46.5 ± 2.4	51.0 ± 1.4	61.7 ± 13.0	66.4 ± 4.6	71.1 ± 2.4		
	Deepwalk	68.4 ± 2.0	70.0 ± 1.6	72.0 ± 1.4	38.4 ± 3.9	45.5 ± 2.0	50.4 ± 1.5	61.5 ± 1.3	65.8 ± 5.0	70.5 ± 2.2		
	Planetoid-G	63.5 ± 4.7	65.6 ± 2.7	69.0 ± 1.5	37.8 ± 4.0	44.9 ± 3.3	49.8 ± 1.4	60.7 ± 2.0	63.4 ± 2.3	68.0 ± 1.5		
	GCN	60.1 ± 3.7	65.5 ± 2.5	68.6 ± 1.9	38.3 ± 3.2	44.2 ± 2.2	48.0 ± 1.8	60.0 ± 1.9	63.6 ± 2.5	70.5 ± 1.5		
	AdaDIF	65.5 ± 2.5	70.6 ± 2.2	72.0 ± 1.1	$\textbf{36.1} \pm \textbf{3.9}$	44.0 ± 2.8	48.1 ± 1.2	60.4 ± 0.6	67.0 ± 4.4	72.6 ± 1.8		
	PPR	65.0 ± 2.3	70.0 ± 2.3	71.9 ± 1.5	34.7 ± 5.0	43.5 ± 2.3	47.6 ± 0.6	61.7 ± 0.6	68.1 ± 3.6	72.6 ± 1.8		
Ē	HK	65.0 ± 2.5	70.0 ± 2.6	72.0 ± 1.1	33.9 ± 5.4	42.8 ± 2.2	47.0 ± 0.6	60.5 ± 0.6	66.8 ± 4.7	72.7 ± 1.8		
Ō	LP	60.1 ± 3.2	66.5 ± 4.1	70.6 ± 2.3	34.8 ± 4.6	41.8 ± 3.9	51.5 ± 1.2	51.5 ± 12.3	66.2 ± 6.6	67.8 ± 2.0		
Macro	Node2vec	62.4 ± 2.0	64.7 ± 1.7	69.2 ± 1.2	34.6 ± 2.7	41.6 ± 1.9	45.3 ± 1.5	59.5 ± 1.2	64.0 ± 3.8	72.3 ± 1.4		
4	Deepwalk	61.8 ± 2.2	64.5 ± 2.0	68.5 ± 1.4	34.0 ± 2.5	41.0 ± 2.0	44.7 ± 1.8	59.3 ± 1.2	63.8 ± 4.0	72.1 ± 1.3		
	Planetoid-G	59.9 ± 4.5	63.0 ± 3.0	68.7 ± 1.9	33.3 ± 2.5	40.2 ± 2.2	43.6 ± 2.0	57.7 ± 1.5	61.9 ± 3.5	66.1 ± 1.8		
	GCN	53.8 ± 6.6	61.9 ± 2.6	63.8 ± 1.5	32.8 ± 2.0	39.1 ± 1.8	43.0 ± 1.7	54.4 ± 4.1	57.2 ± 5.2	60.5 ± 2.4		

Experimental Results II

Effect of K

Peak performance is typically achieved for K around 20

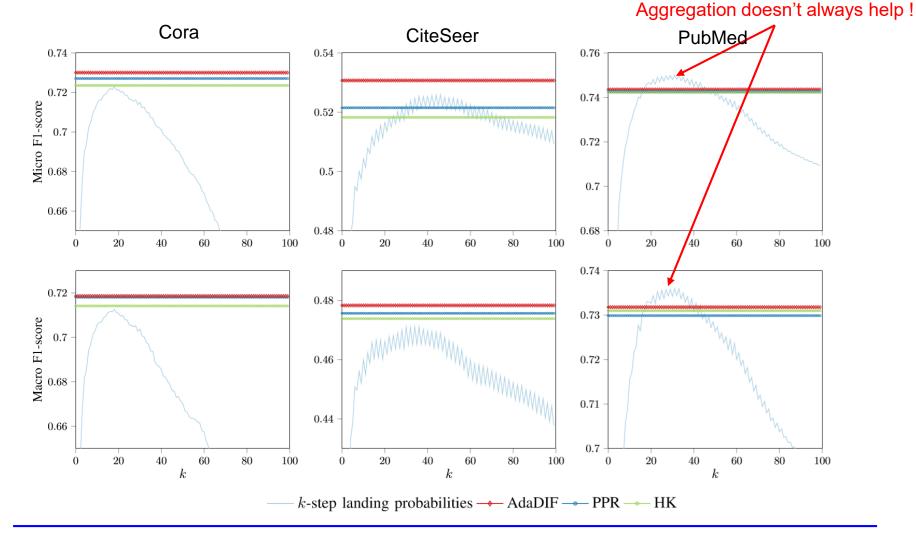


Runtime Comparisons

 AdaDIF is significantly faster than competing approaches

Per-step analysis

Accuracy of k-th landing probabilities is a type of "graph-signature"



D. Berberidis, A. N. Nikolakopoulos, and G. B. Giannakis, "Adaptive Diffusions for Scalable Learning over Graphs", IEEE Transactions on Signal Processing 2019 (short version received Best Paper Award in KDD MLG '18)

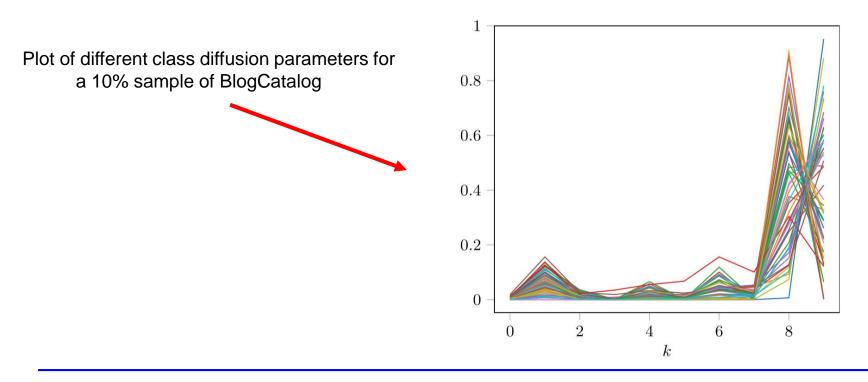
Multilabel graphs

- Number of labels per node assumed known (typical)
 - Evaluate accuracy of top-ranking classes
- AdaDIF approaches Node2vec Micro-F1 accuracy for PPI and BlogCatalog
 - Significant improvement over non-adaptive PPR and HK for all graphs
- AdaDIF achieves state-of-the-art Macro-F1 performance

	Graph PPI					BlogCatalog		Wikipedia		
	$ \mathcal{L} / \mathcal{V} $	10%	20%	30%	10%	20%	30%	10%	20%	30%
	AdaDIF	15.4 ± 0.5	17.9 ± 0.7	19.2 ± 0.6	31.5 ± 0.6	34.4 ± 0.5	36.3 ± 0.4	28.2 ± 0.9	30.0 ± 0.5	31.2 ± 0.7
Ē	PPR	13.8 ± 0.5	15.8 ± 0.6	17.0 ± 0.4	21.1 ± 0.8	23.6 ± 0.6	25.2 ± 0.6	10.5 ± 1.5	8.1 ± 0.7	7.2 ± 0.5
cro-	HK	14.5 ± 0.5	16.7 ± 0.6	18.1 ± 0.5	22.2 ± 1.0	24.7 ± 0.7	26.6 ± 0.7	9.3 ± 1.4	7.3 ± 0.7	6.0 ± 0.7
Mic	Node2vec	$\bf 16.5 \pm 0.6$	18.2 ± 0.3	19.1 ± 0.3	35.0 ± 0.3	36.3 ± 0.3	37.2 ± 0.2	42.3 ± 0.9	44.0 ± 0.6	45.1 ± 0.4
	Deepwalk	16.0 ± 0.6	17.9 ± 0.5	18.8 ± 0.4	34.2 ± 0.4	35.7 ± 0.3	36.4 ± 0.4	41.0 ± 0.8	43.5 ± 0.5	44.1 ± 0.5
	AdaDIF	13.4 ± 0.6	15.4 ± 0.7	16.5 ± 0.7	23.0 ± 0.6	25.3 ± 0.4	27.0 ± 0.4	7.7 ± 0.3	8.3 ± 0.3	9.0 ± 0.2
Ē	PPR	12.9 ± 0.4	14.7 ± 0.5	15.8 ± 0.4	17.3 ± 0.5	19.5 ± 0.4	20.8 ± 0.3	4.4 ± 0.3	3.8 ± 0.6	3.6 ± 0.2
CI O-	HK	13.4 ± 0.6	15.4 ± 0.5	16.5 ± 0.4	18.4 ± 0.6	20.7 ± 0.4	22.3 ± 0.4	4.2 ± 0.4	3.7 ± 0.5	3.5 ± 0.2
Macro	Node2vec	13.1 ± 0.6	15.2 ± 0.5	16.0 ± 0.5	16.8 ± 0.5	19.0 ± 0.3	20.1 ± 0.4	7.6 ± 0.3	8.2 ± 0.3	8.5 ± 0.3
~	Deepwalk	12.7 ± 0.7	15.1 ± 0.6	16.0 ± 0.5	16.6 ± 0.5	18.7 ± 0.5	19.6 ± 0.4	7.3 ± 0.3	8.1 ± 0.2	8.2 ± 0.2

Diversity of class diffusions

- **Q**: Why does AdaDIF perform much better than fixed HK/PPR in m. label case ?
- A: Possibly due to <u>large number</u> of classes with <u>diverse</u> distributions.... AdaDIF naturally captures this diversity.



Anomaly identification - removal

Leave-one-out loss: Quantifies how well each node is predicted by the rest

$$\ell_{\rm rob}^c(\mathbf{y}_{\mathcal{L}_c},\boldsymbol{\theta}) := \sum_{i \in \mathcal{L}} \frac{1}{d_i} \left([\bar{\mathbf{y}}_{\mathcal{L}_c}]_i - [\mathbf{f}_c(\boldsymbol{\theta}; \mathcal{L} \setminus i)]_i \right)^2$$

 $\square \ \mathbf{f}_c(\boldsymbol{\theta}; \mathcal{L} \setminus i) \text{'s obtained via} |\mathcal{L}| \text{ different random walks (} \mathcal{O}(|\mathcal{L}|K|\mathcal{E}|) \text{)}$

□ Model outliers as large residuals, captured by nnz entries of sparse vec. $\mathbf{o} \in \mathbb{R}^N$ $\ell_{\mathrm{rob}}^c(\mathbf{y}_{\mathcal{L}_c}, \mathbf{o}, \boldsymbol{\theta}) := \|\mathbf{D}_{\mathcal{L}}^{-\frac{1}{2}}\left(\mathbf{o} + \bar{\mathbf{y}}_{\mathcal{L}_c} - \mathbf{R}_c^{(K)}\boldsymbol{\theta}\right)\|_2^2$

Joint optimization

$$\{\hat{\boldsymbol{\theta}}_{c}, \hat{\mathbf{o}}_{c}\}_{c \in \mathcal{Y}} = \arg\min_{\substack{\boldsymbol{\theta}_{c} \in \mathcal{S}^{K} \\ \mathbf{o}_{c} \in \mathbb{R}^{N}}} \sum_{c \in \mathcal{Y}} \left[\ell_{\mathrm{rob}}^{c}(\mathbf{y}_{\mathcal{L}_{c}}, \mathbf{o}_{c}, \boldsymbol{\theta}_{c}) + \lambda_{\theta} \|\boldsymbol{\theta}_{c}\|_{2}^{2}\right] + \lambda_{o} \|\mathbf{D}_{\mathcal{L}}^{-\frac{1}{2}}\mathbf{O}\|_{2,1}$$
Group sparsity on

 $\mathbf{O} := \begin{bmatrix} \mathbf{o}_1 \cdots \mathbf{o}_{|\mathcal{Y}|} \end{bmatrix}$ i.e., force consensus among classes regarding which nodes are outliers

Alternating minimization converges to stationary point

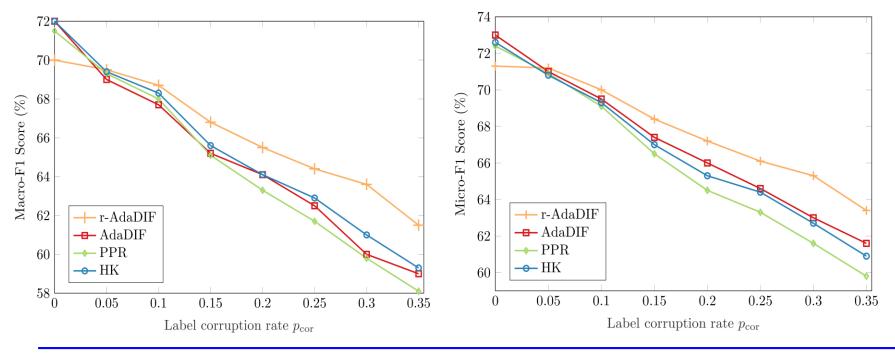
□ Remove outliers $S := \{i \in \mathcal{L} : \| [\hat{\mathbf{O}}]_{i,:} \|_2 > 0\}$ from \mathcal{L} and predict \mathcal{U} using $\{\hat{\boldsymbol{\theta}}_c\}_{c \in \mathcal{Y}}$

Testing classifier robustness

- Anomalies injected in Cora graph
 - > Go through each entry $[\mathbf{y}_{\mathcal{L}}]_i = c$ of $\mathbf{y}_{\mathcal{L}}$
 - > With probability p_{cor} draw a label $c' \sim \text{Unif}\{\mathcal{Y} \setminus c\}$
 - > Replace $[\mathbf{y}_{\mathcal{L}}]_i \leftarrow c'$

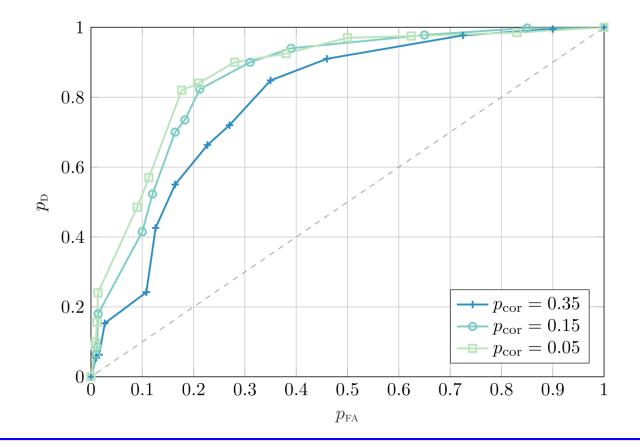
 \Box For fixed $\lambda_o > 0$, accuracy with $p_{cor} > 0$ improves as false samples are removed

 \succ Less accuracy for $p_{\rm cor}=0$ (no anomalies), only useful samples removed (false alarms)

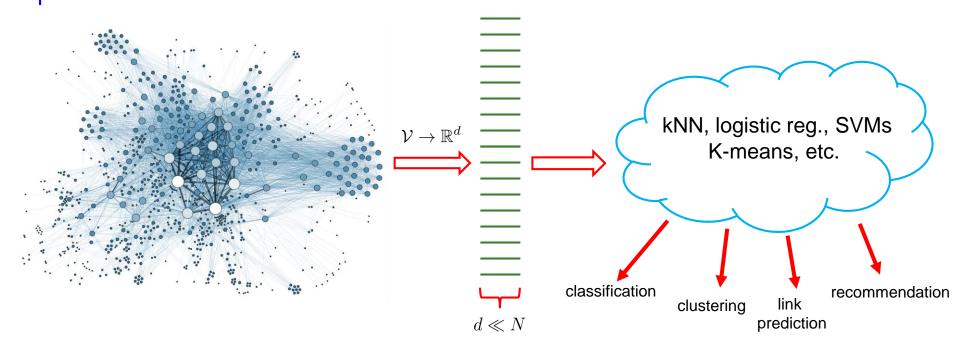


Testing anomaly detection performance

- **ROC** curve: Probability of detection vs probability of false alarms
 - > As expected, performance improves as p_{cor} decreases



Unsupervised node embedding



Objective: Per-node <u>feature extraction</u> preserving graph **structure** and **properties**

Aim to preserve **some** pairwise similarity $s_{\mathcal{G}}(\cdot, \cdot) : \mathcal{V} \times \mathcal{V} \to \mathcal{R}$

$$\{\mathbf{e}_{i}^{*}\}_{i\in\mathcal{V}} = \arg\min_{\{\mathbf{e}_{i}\}_{i\in\mathcal{V}}} \sum_{i,j\in\mathcal{V}} \ell\left(s_{\mathcal{G}}(v_{i},v_{j}), s_{\mathcal{E}}(\mathbf{e}_{i},\mathbf{e}_{j})\right)$$

H. Cai, V. W. Zheng, and K. Chang, "A comprehensive survey of graph embedding: problems, techniques and applications," IEEE Trans. on Knowledge and Data Engineering, vol. 30, no. 9, pp. 1616–1637, 2018.

Node Embedding via matrix factorization

□ For loss
$$\ell(x, x') = (x - x')^2$$
 and \mathbb{R}^d similarities $s_{\mathcal{E}}(\mathbf{e}_i, \mathbf{e}_j) = \mathbf{e}_i^T \mathbf{e}_j$

 \Box Embedding \equiv Low-rank factorization of (symmetric) $S_{\mathcal{G}}$

$$\mathbf{E}^* = \arg \min_{\mathbf{E} \in \mathbb{R}^{N \times d}} \|\mathbf{S}_{\mathcal{G}} - \mathbf{E}\mathbf{E}^T\|_F^2$$

- Using Truncated(T) SVD S_G := U_d Σ_d U_d^T is E^{*} = U_d √ Σ_d
 Fast if nnz(S_G) ≪ N² and d ≪ N
- lacksquare Most approaches use a fixed $\mathbf{S}_\mathcal{G}$
 - \succ Few parametrize $S_{\mathcal{G}}$ and tune parameters using labels (e.g., Nod2vec)

Our contribution: Adapt $\mathbf{S}_{\mathcal{G}}$ to \mathcal{G} efficiently and w/o supervision

Multi-length node similarities

Given the "Base" similarity S must follow graph sparsity pattern (e.g., $S = D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$)

$$S_{i,j} = \begin{cases} s_{i,j}, & (i,j) \in \mathcal{E} \\ 0, & (i,j) \notin \mathcal{E} \end{cases}$$

Similarity matrix parametrization

> Weigh k-length (non-Hamiltonian) paths with θ_k

$$\mathbf{S}_{\mathcal{G}}(\boldsymbol{ heta}) = \sum_{k=1}^{K} \theta_k \mathbf{S}^k, \quad \text{s.t.} \quad \boldsymbol{ heta} \in \mathcal{S}^K$$

- No explicit formation of dense $\mathbf{S}_{\mathcal{G}}(\boldsymbol{ heta})$
 - Only TSVD of S is needed
 - $\succ~$ Polynomial obeyed by TSVD if $~\theta_k \geq 0~\forall k$

$$\mathbf{S}_{\mathcal{G}}(\boldsymbol{\theta}) = \mathbf{U}\left(\sum_{k=1}^{K} \theta_k \boldsymbol{\Sigma}^k\right) \mathbf{U}^T \Longrightarrow \mathbf{E}^*(\boldsymbol{\theta}) = \mathbf{U}_d \sqrt{\boldsymbol{\Sigma}_d(\boldsymbol{\theta})}$$

Capturing spectral information

□ If base similarity matrix is PSD

 $\mathbf{S} \in \mathcal{P}_N^+ \square$ SVD $(\mathbf{S}) \equiv \text{EVD}(\mathbf{S})$

Multi-length embeddings given as weighted eigenvectors $\mathbf{E}^*(\boldsymbol{\theta}) = \mathbf{U}_d \sqrt{\mathbf{\Lambda}_d(\boldsymbol{\theta})}$

All requirements (symmetry, sparsity pattern, PSD) can be met

$$\mathbf{S} = \frac{1}{2} \left(\mathbf{I} + \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \right)$$

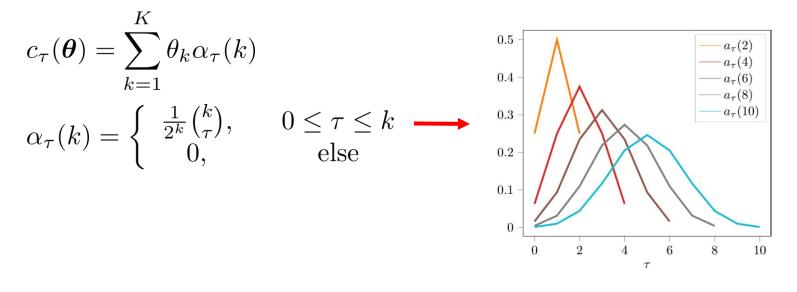
- \succ Can be shown that $\lambda_i \left(\mathbf{S}^k \right) \in [0,1] \; \forall \; i,k$
- > Same eigenvectors as spectral clustering $\mathbf{L}_{sym} := \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$

Large weights to longer paths shrink "detailed" eigenvectors

Random-walk interpretation

- Node similarity as function of landing probabilities weighted at different lengths
 - Each length is **not** freely parametrized (lazy random walks)
 - Dictionary-of-diffusions type

$$s_{\mathcal{G}}(v_i, v_j, \boldsymbol{\theta}) = \sqrt{\frac{d_j}{d_i}} \sum_{\tau=0}^{K} c_{\tau}(\boldsymbol{\theta}) \Pr\{X_{\tau} = v_i | X_0 = v_j\}$$



Numerical study of model

Assume edges are generated according to model

$$\mathbf{A} \sim f_A(\mathbf{A})$$

$$s^*(v_i, v_j) := \Pr\{(i, j) \in \mathcal{E}\} = \mathbb{E}_{f_A} [A_{i,j}]$$
$$\mathbf{S}^* := \mathbb{E}_{f_A} [\mathbf{A}]$$

Quality-of-match (QoM) of estimated similarities $\hat{\mathbf{S}} = F(\mathbf{A})$

$$\operatorname{QoM} := \mathbb{E}_{f_A} \left[\operatorname{PC} \left(\mathbf{S}^*, F(\mathbf{A}) \right) \right]$$
$$\operatorname{PC} \left(\mathbf{X}_1, \mathbf{X}_2 \right) := \frac{\left(\operatorname{vec} \left(\mathbf{X}_1 \right) \right)^T \operatorname{vec} \left(\mathbf{X}_2 \right)}{\|\mathbf{X}_1\|_F \|\mathbf{X}_2\|_F}$$

Numerical experiments on SBMs

- Stochastic block model with 3 clusters of equal size
- □ SBM probabilities matrix (p>q, c<1)

$$\mathbf{W}_{\rm sbm} = \begin{bmatrix} p & q & cq \\ q & p & q \\ cq & q & p \end{bmatrix}$$

"True" similarities given by SBM parameters

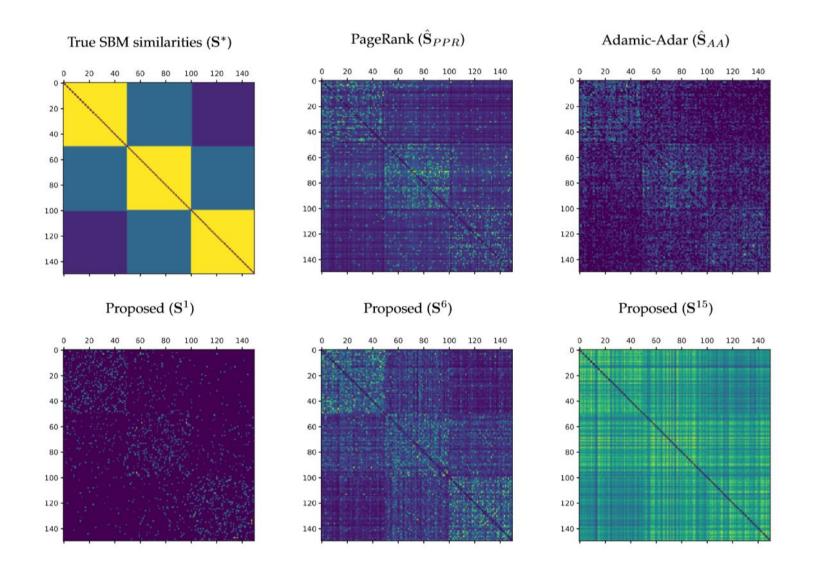
$$\mathbf{S}^* = \mathbb{E}\left[\mathbf{A}\right] = \mathbf{W}_{\mathrm{sbm}} \otimes \left(\mathbf{1}_{N/3}\mathbf{1}_{N/3}^T\right) - \mathrm{diag}(p\mathbf{1}_N)$$

Evaluation of different scenarios with N=150, and 100 experiments

> Comparison of S^k with baseline node similarities

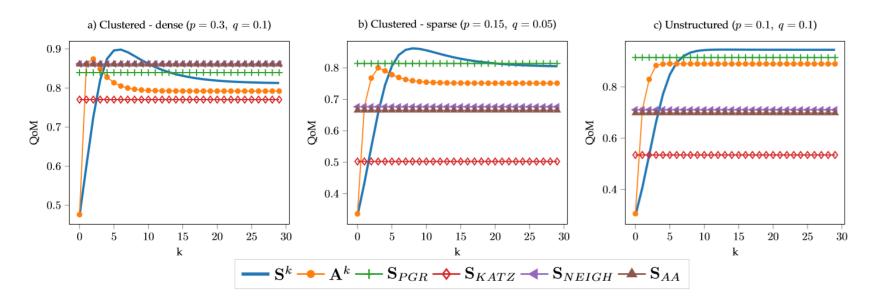
$$\hat{\mathbf{S}}_{PPR} := (1 - \alpha)(\mathbf{I} - \alpha \mathbf{A} \mathbf{D}^{-1})^{-1} \qquad \hat{\mathbf{S}}_{NEIGH} := \mathbf{A}^2$$
$$\hat{\mathbf{S}}_{KATZ} := (1 - \beta)(\mathbf{I} - \beta \mathbf{A})^{-1}\mathbf{A} \qquad \hat{\mathbf{S}}_{AA} := \mathbf{A} \mathbf{D}^{-1}\mathbf{A}$$

Behavior of various similarities



https://github.com/DimBer/ASE-project/tree/master/sim_tests

Quality of match (QoM) results



Disclaimer: To be determined whether S^k can yield superior link prediction

Main observations

- For structured graphs there exists a "sweet spot" of k's
- $\succ ~~ {f S}^k$ can match "true" similarities better than ${f A}^k$

Q: Can we find the "sweet spot" from only one A?

D. Berberidis and G. B. Giannakis, "Adaptive-similarity node embedding for Scalable Learning over Graphs", IEEE Transactions on Knowledge and Data Engineering (submitted 2018)

Adaptive Similarity Embedding (ASE)

Step 1) Draw edge samples $S^+ \subset \mathcal{E}$ and $S^- \subset \mathcal{V} \times \mathcal{V} \setminus \mathcal{E}$ with $|S^+| = |S^-|$

Samples must be <u>representative</u> but w. <u>min. spectral perturbation</u>*
 Sampling wp $\propto \frac{d_i + d_j}{d_i d_j}$ very simple & strikes a good balance

Step 2) Build $\mathcal{G}^- = (\mathcal{V}, \mathcal{E} \setminus \mathcal{S}^+)$ and do TSVD on \mathbf{S}^-

> Convenient embedding similarity parametrization $\left(\mathbf{e}_{i}^{-}(\boldsymbol{\theta})\right)^{T}\mathbf{e}_{j}^{-}(\boldsymbol{\theta}) = \mathbf{x}_{i,j}^{T} \boldsymbol{\theta}$

Step 3) Train SVM parameters θ^* to separate S^+ and S^-

▶ Use $\mathbf{x}_{i,j}$'s for $(i,j) \in S^+ \cup S^-$ as features

Step 4) Repeat Steps 1-3 for different splits if variance is large (small sample)

Step 5) TSVD on S of full \mathcal{G} and return $\mathbf{E}^*(\boldsymbol{\theta}^*) = \mathbf{U}_d \sqrt{\boldsymbol{\Sigma}_d(\boldsymbol{\theta}^*)}$

^{*} A. Milanese, J. Sun, and T. Nishikawa, "Approximating spectral impact of structural perturbations in large networks," Physical Review E, vol. 81, no. 4, pp. 046–112, 2010.

Experiments on real graphs

Competing baselines

- DeepWalk [Perozzi et al, '14]
- VERSE [Tsitsulin et al, '18]
- LINE [Tang et al, '15]
- HOPE [Ou et al, '16]
- Spectral (unweighted)
- Comparison with
 - Scalable methods $\mathcal{O}(\times^3) \mathcal{O}(\times^2)$
 - No (or standardized) hyper-parameters
- Embedding dimension d = 100 (typical) for all methods
- □ ASE maximum length K=10 (since typically $\theta_k = 0$ for k >10)
- Embeddings used as features for classification, link-prediction, and clustering

Graph	$ \mathcal{V} $	$ \mathcal{E} $	$ \mathcal{Y} $	Density
PPI (H. Sapiens)	3,890	76,584	50	10^{-2}
Wikipedia	4,733	184,182	40	$1.6 imes 10^{-2}$
BlogCatalog	10,312	333,983	39	6.2×10^{-3}
ca-CondMat	23,133	93,497	-	$3.5 imes 10^{-4}$
ca-AstroPh	18,772	198,110	-	1.1×10^{-3}
email-Enron	36,692	183,831	-	$2.7 imes 10^{-4}$
CoCit	44,312	195,362	15	2×10^{-4}
vk2016-17	78,593	2,680,542	-	$8.7 imes 10^{-4}$
com-Amazon	334,863	925,872	-	1.7×10^{-5}
com-DBLP	317,080	1,049,866	-	2.1×10^{-5}

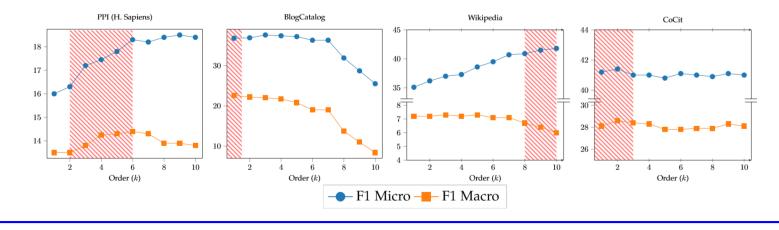
Validating parameter adaptation with labels

Variability of ASE parameters among graphs

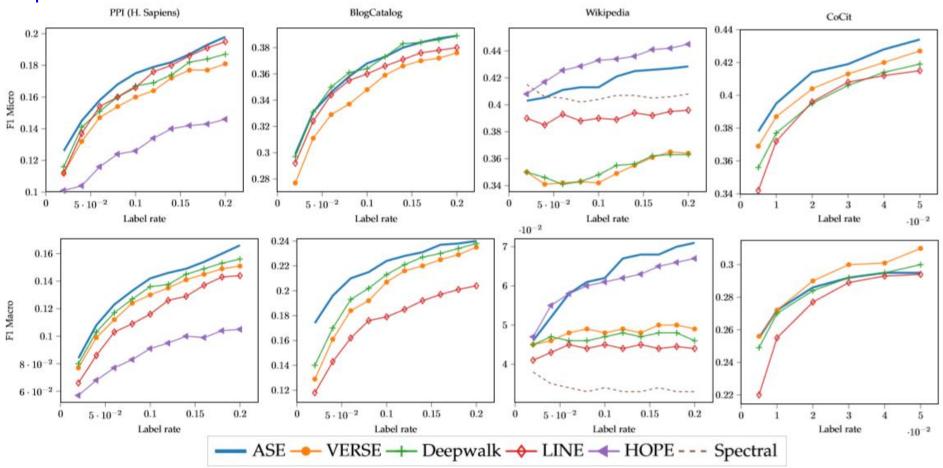
Graph	$ heta_1$	$ heta_2$	$ heta_3$	$ heta_4$	$ heta_5$	$ heta_6$	θ_7	θ_8	$ heta_9$	$ heta_{10}$	range	strength
PPI (H. Sapiens)	0.00	0.14	0.31	0.29	0.21	0.04	0.00	0.00	0.00	0.00	medium	medium
Wikipedia	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.37	0.62	long	strong
BlogCatalog	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	short	very strong
ca-CondMat	0.55	0.33	0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	short	strong
ca-AstroPh	0.76	0.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	short	strong
email-Enron	0.24	0.25	0.18	0.14	0.1	0.06	0.02	0.00	0.00	0.00	medium	weak
CoCit	0.61	0.33	0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	short	strong
vk2016-17	0.71	0.29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	short	strong
com-Amazon	0.10	0.10	0.10	0.10	0.09	0.09	0.09	0.09	0.09	0.09	short	very weak
com-DBLP	0.11	0.10	0.10	0.09	0.09	0.09	0.09	0.09	0.09	0.08	short	very weak

❑ ASE parameters >0 for lengths that perform well on labels

Fully Unsupervised: No cross-validation or a-priori knowledge of labels



Node classification with logistic regression



- ASE has the <u>highest accuracy</u> in 5/8 cases
 - Not clear which method is second best
 - Spectral (unweighted) embeddings perform poorly

Link prediction on VK social network

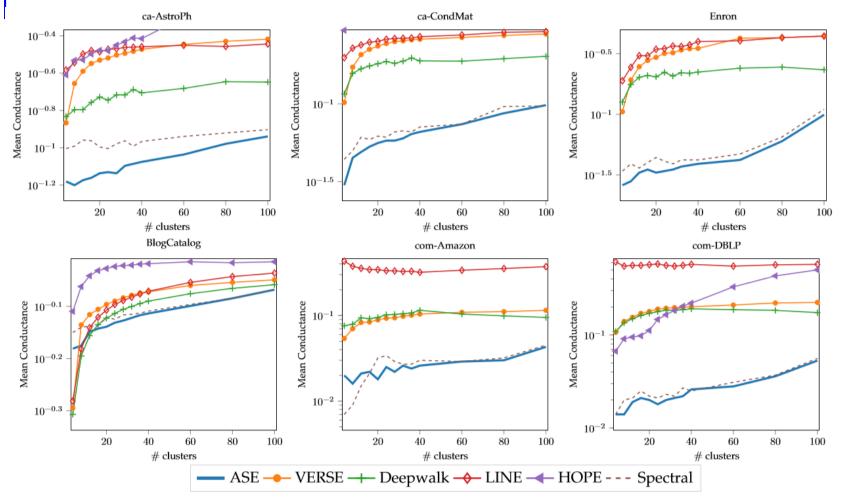
- New friendships (≈ 20,000) appeared between Nov. 2016 and May 2017
 - Only Nov. 2016 users considered
- Experiment [Tsitsulin et al., '18]
 - Embeded Nov. 2016 network
 - Sample ≈ 20,000 ``negative" edges
 - Split positive and negative new edges to 50/50 training/testing
 - Train logistic regression using Nov. 2016 features (on training edges)
 - Classify test edges to positive and negative

	VERSE	ASE	LINE	Deepwalk	HOPE	Spectral
Acc.	0.79	0.75	0.74	0.69	0.62	0.60

ASE second best

Much more accurate than unweighted spectral embedding

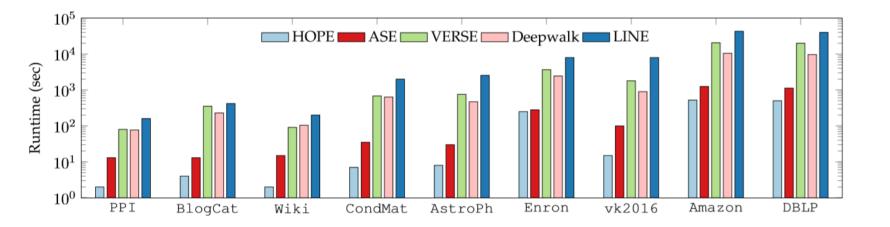
Clustering with K-means++



- Evaluating **average conductance per cluster** wrt # of clusters
- □ ASE "inherits" spectral clustering properties (high resolution limit)

Runtime

SVD based methods (ASE and HOPE) are very fast!



Results are for shared-memory multi-threaded setup

- SLEPc with MPI (although for shared memory) was used for SVD
- SVD more memory demanding than LINE & VERSE
- LINE & VERSE could benefit more from massive parallelization

Conclusions

- Diffusion / Random Walk based approaches
 - Simple, intuitive and flexible tool for graph learning tasks
 - Semi-supervised: Node classification
 - Unsupervised: Node Embedding
 - Scalable to large graphs
- Observations
 - Semi-supervised
 - Simple models capture most of the information in "simple" data
 - Adaptation to graph/class can boost performance in more complex cases
 - > Unsupervised
 - Each graph has unique diffusion-based similarity pattern
 - Such similarities can be identified with relative accuracy

Related work and Ongoing Projects

- Personalized Diffusions for Top-N recommendation
 - Random walks on (inferred) item graphs
 - Adapting random-walk pattern of each user based on history
- Robust Semi-Supervised Classification
 - RANdom Sampling And Consensus (RANSAC) + Diffusion-based classifiers

Binary Node Embeddings / Node Hashing

- Each node is mapped to d bits
- Suitable for large networks (> 1 million nodes)
- Aim to compress graph and facilitate learning/mining tasks (e.g., kNN queries)

Thank you !

Leave-one-out fitting loss

Quantifies how well each (labeled) node is predicted by the rest

$$\ell_{
m rob}^{c}(\mathbf{y}_{\mathcal{L}_{c}}, \boldsymbol{ heta}) := \sum_{i \in \mathcal{L}} rac{1}{d_{i}} \left([ar{\mathbf{y}}_{\mathcal{L}_{c}}]_{i} - [\mathbf{f}_{c}(\boldsymbol{ heta}; \mathcal{L} \setminus i)]_{i}
ight)^{2}$$

 $\square \ \mathbf{f}_c(\boldsymbol{\theta}; \mathcal{L} \setminus i) \text{'s obtained via } |\mathcal{L}| \text{ different random walks (} \mathcal{O}(|\mathcal{L}|K|\mathcal{E}|))$

Compact form $\ell_{\text{rob}}^{c}(\mathbf{y}_{\mathcal{L}_{c}}, \boldsymbol{\theta}) := \|\mathbf{D}_{\mathcal{L}}^{-\frac{1}{2}} \left(\bar{\mathbf{y}}_{\mathcal{L}_{c}} - \mathbf{R}_{c}^{(K)} \boldsymbol{\theta} \right) \|_{2}^{2} \quad \left[\mathbf{R}_{c}^{(K)}\right]_{ik} := \begin{cases} \left[\mathbf{p}_{\mathcal{L}_{c} \setminus i}^{(k)}\right]_{i}, & i \in \mathcal{L}_{c} \\ \left[\mathbf{p}_{c}^{(k)}\right]_{i}, & \text{else} \end{cases}$

Diffusion parameters

$$\hat{\boldsymbol{\theta}}_{c} = \arg\min_{\boldsymbol{\theta}\in\mathcal{S}^{K}} \ell_{\mathrm{rob}}^{c}(\mathbf{y}_{\mathcal{L}_{c}},\boldsymbol{\theta}) + \lambda_{\theta} \|\boldsymbol{\theta}\|_{2}^{2}$$

Anomaly identification - removal

☐ Model outliers as large residuals, captured by nnz entries of sparse vec. $\mathbf{o} \in \mathbb{R}^N$ $\ell_{\mathrm{rob}}^c(\mathbf{y}_{\mathcal{L}_c}, \mathbf{o}, \boldsymbol{\theta}) := \|\mathbf{D}_{\mathcal{L}}^{-\frac{1}{2}} \left(\mathbf{o} + \bar{\mathbf{y}}_{\mathcal{L}_c} - \mathbf{R}_c^{(K)} \boldsymbol{\theta}\right)\|_2^2$

Joint optimization

$$\{ \hat{\boldsymbol{\theta}}_{c}, \hat{\mathbf{o}}_{c} \}_{c \in \mathcal{Y}} = \arg \min_{\substack{\boldsymbol{\theta}_{c} \in \mathcal{S}^{K} \\ \mathbf{o}_{c} \in \mathbb{R}^{N}}} \sum_{c \in \mathcal{Y}} \left[\ell_{rob}^{c} (\mathbf{y}_{\mathcal{L}_{c}}, \mathbf{o}_{c}, \boldsymbol{\theta}_{c}) + \lambda_{\theta} \| \boldsymbol{\theta}_{c} \|_{2}^{2} \right] + \lambda_{o} \| \mathbf{D}_{\mathcal{L}}^{-\frac{1}{2}} \mathbf{O} \|_{2,1}$$
Group sparsity on
$$\mathbf{O} := [\mathbf{o}_{1} \cdots \mathbf{o}_{|\mathcal{Y}|}]$$
i.e., force consensus among classes regarding which nodes are outliers
$$\hat{\boldsymbol{\theta}}_{c}^{(t)} = \arg \min_{\boldsymbol{\theta} \in \mathcal{S}^{K}} \ell_{rob}^{c} (\bar{\mathbf{y}}_{\mathcal{L}_{c}} + \hat{\mathbf{o}}_{c}^{(t-1)}, \boldsymbol{\theta}) + \lambda_{\theta} \| \boldsymbol{\theta} \|_{2}^{2}$$

$$\hat{\mathbf{O}}^{(t)} = \text{SoftThres}_{\lambda_{o}} \left(\tilde{\mathbf{Y}}^{(t)} \right)$$

$$\frac{\text{Residuals}}{\tilde{\mathbf{Y}}^{(t)} := \left[\tilde{\mathbf{y}}_{1}^{(t)}, \dots, \mathbf{y}_{|\mathcal{Y}|}^{(t)} \right]$$

$$\mathbf{Z} = \text{SoftThres}_{\lambda_{o}} (\mathbf{X})$$

$$\tilde{\mathbf{y}}_{c}^{(t)} := \bar{\mathbf{y}}_{\mathcal{L}_{c}} - \mathbf{R}_{c}^{(K)} \hat{\boldsymbol{\theta}}_{c}^{(t)}$$

$$\mathbf{z}_{i} = \| \mathbf{x}_{i} \|_{2} [1 - \lambda_{o} / (2\| \mathbf{x}_{i} \|_{2})]_{+}$$

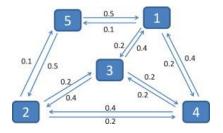
- Alternating minimization converges to stationary point
- **Q** Remove outliers $S := \{i \in \mathcal{L} : \|[\hat{\mathbf{O}}]_{i,:}\|_2 > 0\}$ from \mathcal{L} and predict \mathcal{U} using $\{\hat{\boldsymbol{\theta}}_c\}_{c \in \mathcal{Y}}$

Random walks on graphs

- Position of random walker at step k: $X_k \in \mathcal{V}$
 - Transition probabilities

$$\Pr\{X_k = i | X_{k-1} = j\} = W_{ij}/d_j$$

:= $[\mathbf{H}]_{ij} = [\mathbf{W}\mathbf{D}^{-1}]_{ij}$



Steady-state probs.

$$\pi_i := \lim_{k \to \infty} \sum_{j \in \mathcal{V}} \Pr\{X_k = i | X_0 = j\} \Pr\{X_0 = j\} = \frac{d_i}{2|\mathcal{E}|}$$

- Presumes undirected, connected, and non-bipartite graphs
- Not informative for SSL
- Step-k landing probabilities

es
$$p_i^{(k)} := \sum_{j \in \mathcal{V}} \Pr\{X_k = i | X_0 = j\} \Pr\{X_0 = j\}$$

 $\mathbf{p}^{(k)} = \mathbf{H}^k \mathbf{p}^{(0)} := [p_1^{(k)} \dots p_N^{(k)}]^T$

Measure influence of $\mathbf{p}^{(0)}$ on every node in \mathcal{V} - informative for SSL!

Landing probabilities for SSL

- Random walk per class with $\mathbf{p}_{c}^{(k)} = \mathbf{H}^{k} \mathbf{v}_{c}$
 - Initial ("root") probability distribution
 - Per step landing probabilities found by multiplying with sparse H

$$\mathbf{P}_{c}^{(K)} \coloneqq \begin{bmatrix} \mathbf{p}_{c}^{(1)} & \cdots & \mathbf{p}_{c}^{(K)} \end{bmatrix}$$
 $[\mathbf{v}_{c}]_{i} = \begin{cases} 1/|\mathcal{L}_{c}|, & i \in \mathcal{L}_{c} \\ 0, & \text{else} \end{cases}$
 $\mathcal{L}_{c} \coloneqq \{i \in \mathcal{L} : y_{i} = c\}$

(K)

Family of per-class diffusions

$$\mathbf{f}_{c}(\boldsymbol{\theta}) := \sum_{k=1}^{K} \theta_{k} \mathbf{p}_{c}^{(k)} = \mathbf{P}_{c}^{(K)} \boldsymbol{\theta}, \quad \boldsymbol{\theta} \in \mathcal{S}^{K}$$

> Valid pmf with *K*-dim probability simplex

$$\mathcal{S}^{K} := \{ \boldsymbol{\theta} \in \mathbb{R}^{K} : \ \boldsymbol{\theta} \geq \mathbf{0}, \ \mathbf{1}^{\mathsf{T}} \boldsymbol{\theta} = 1 \}$$

$$\hat{y}_i(\boldsymbol{\theta}) := \arg \max_{c \in \mathcal{Y}} [\mathbf{f}_c(\boldsymbol{\theta})]_i$$

Unifying diffusion-based SSL

Special case 1: Personalized page rank (PPR) diffusion [Lin'10]

$$\mathbf{f}_{c}(\boldsymbol{\theta}_{\mathrm{PPR}}) = (1-\alpha) \sum_{k=1}^{K} \alpha^{k} \mathbf{p}_{c}^{(k)} \quad \boldsymbol{\theta}_{\mathrm{PPR}} := (1-\alpha) \left[\alpha \cdots \alpha^{K} \right]^{\mathsf{T}}, \ \alpha \in (0,1)$$

> Pmf of random walk with restart probability $1-\alpha$; in steady-state

$$\lim_{K \to \infty} \mathbf{f}_c(\boldsymbol{\theta}_{\text{PPR}}) = (1 - \alpha)(\mathbf{I} - \alpha \mathbf{H})^{-1} \mathbf{v}_c$$

Special case 2: Heat kernel (HK) diffusion [Chung'07]

$$\mathbf{f}_c(\boldsymbol{\theta}_{\mathrm{HK}}) = e^{-t} \sum_{k=0}^{K} \frac{t^k}{k!} \mathbf{p}_c^{(k)} \qquad \boldsymbol{\theta}_{\mathrm{HK}} := e^{-t} \begin{bmatrix} t & \frac{t^2}{2} & \cdots & \frac{t^K}{K!} \end{bmatrix}^{\mathsf{T}}, \ t > 0$$

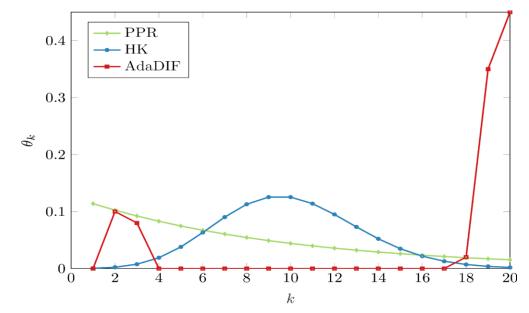
"Heat" flowing from roots after time t; in steady-state

$$\lim_{K\to\infty} \mathbf{f}_c(\boldsymbol{\theta}_{\mathrm{HK}}) = e^{-t(\mathbf{I}-\mathbf{H})} \mathbf{v}_c$$

L HK and PPR have fixed parameters (t, α)

Our key contribution: Graph- and label-adaptive selection of $\boldsymbol{\theta}_{c} \in \mathcal{S}^{K}$

Interpretation



□ For $\lambda \to \infty$ (smoothness-only), $\hat{\theta}_c \to \mathbf{e}_K$

Weights concentrates on last landing prob.

For $\lambda \to 0$ (fit-only)

Weights concentrate on first few landing prob.

The simplex constrain promotes sparsity in the diffusion coefficients

D. Berberidis, A. N. Nikolakopoulos, and G. B. Giannakis, "AdaDIF: Adaptive Diffusions for Efficient Semi-supervised Learning over Graphs", Proc. of IEEE Intl. Conf. on Big Data, Seattle, WA, Dec. 2018.

Adaptive diffusions

$$\hat{\mathbf{f}}_{c} = \arg\min_{\mathbf{f}\in\mathbb{R}^{N}} \ell(\mathbf{y}_{\mathcal{L}_{c}}, \mathbf{f}) + \lambda R(\mathbf{f})$$
Normalized label

$$\ell(\mathbf{y}_{\mathcal{L}_{c}}, \mathbf{f}) = \sum_{i\in\mathcal{L}} \frac{1}{d_{i}} (y_{i} - f_{i})^{2} = (\bar{\mathbf{y}}_{\mathcal{L}_{c}} - \mathbf{f})^{\mathsf{T}} \mathbf{D}_{\mathcal{L}}^{-1} (\bar{\mathbf{y}}_{\mathcal{L}_{c}} - \mathbf{f})$$

$$R(\mathbf{f}) = \frac{1}{2} \sum_{i\in\mathcal{V}} \sum_{j\in\mathcal{N}_{i}} \left(\frac{f_{i}}{d_{i}} - \frac{f_{j}}{d_{j}}\right)^{2} = \mathbf{f}^{\mathsf{T}} \mathbf{D}^{-1} \mathbf{L} \mathbf{D}^{-1} \mathbf{f}$$

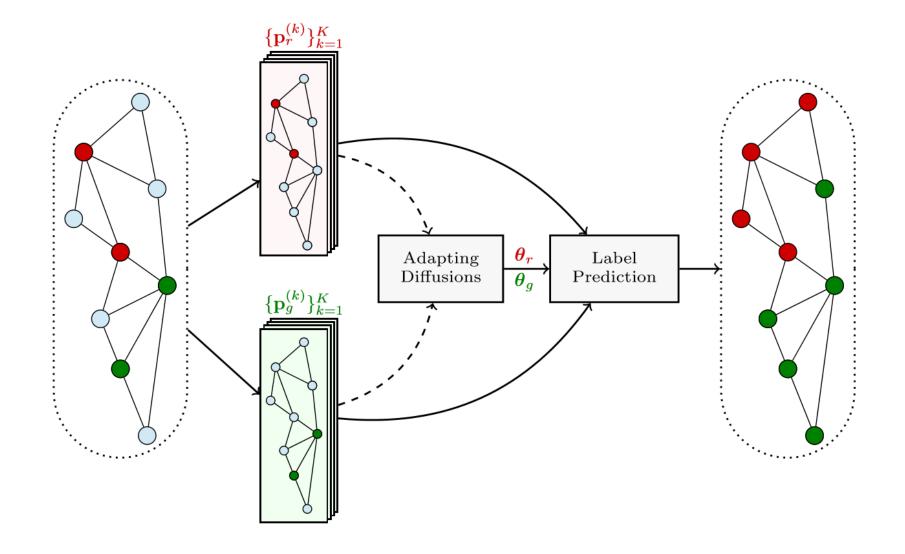
□ AdaDIF scalable to large-scale graphs (K << N)

$$\hat{\boldsymbol{\theta}}_{c} = \arg\min_{\boldsymbol{\theta}\in\mathcal{S}^{K}} \ell(\mathbf{y}_{\mathcal{L}_{c}}, \mathbf{f}_{c}(\boldsymbol{\theta})) + \lambda R(\mathbf{f}_{c}(\boldsymbol{\theta}))$$

 $\Box \quad \text{Linear-quadratic} \quad \hat{\boldsymbol{\theta}}_c = \arg \min_{\boldsymbol{\theta} \in \mathcal{S}^K} \boldsymbol{\theta}^\mathsf{T} \mathbf{A}_c \boldsymbol{\theta} + \boldsymbol{\theta}^\mathsf{T} \mathbf{b}_c$

$$\mathbf{b}_{c} = -\frac{2}{|\mathcal{L}|} (\mathbf{P}_{c}^{(K)})^{\mathsf{T}} \mathbf{D}_{\mathcal{L}}^{-1} \mathbf{y}_{\mathcal{L}^{c}}$$
 ``Differential'' landing prob.
$$\mathbf{A}_{c} = (\mathbf{P}_{c}^{(K)})^{\mathsf{T}} \left(\mathbf{D}_{\mathcal{L}}^{-1} \mathbf{P}_{c}^{(K)} + \lambda \mathbf{D}^{-1} \mathbf{\tilde{P}}_{c}^{(K)} \right) \qquad \tilde{\mathbf{p}}_{c}^{(k)} := \mathbf{p}_{c}^{(k)} - \mathbf{p}_{c}^{(k+1)}$$

AdaDIF in a nutshell



Interpretation and complexity

$$\hat{\boldsymbol{\theta}}_{c} = \arg\min_{\boldsymbol{\theta}\in\mathcal{S}^{K}} \ell(\mathbf{y}_{\mathcal{L}_{c}}, \mathbf{f}_{c}(\boldsymbol{\theta})) + \lambda R(\mathbf{f}_{c}(\boldsymbol{\theta}))$$

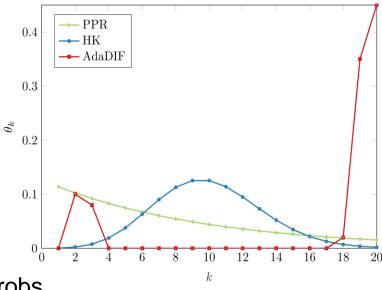
lacksquare For $\lambda o \infty$ (smoothness-only), $\hat{oldsymbol{ heta}}_c o \mathbf{e}_K$

Weight concentrates on last landing prob.

G For $\lambda \to 0$ (fit-only)

Weight concentrates on first few landing probs

- AdaDIF targets a "sweet-spot" between the two
 - \succ Simplex constraint promotes sparsity on θ
- □ If $K < |\mathcal{E}|/N$, per-class complexity $\mathcal{O}(|\mathcal{E}|K)$ thanks to sparsity of **H**
 - Same as non-adaptive HK and PPR; also parallelizable across classes
 - Reflect on PPR and Google ... just avoid K >>



On the choice of *K*

Definition. Let \mathbf{p}_+ and \mathbf{p}_- denote respectively the seed vectors for nodes of class "+" and "-," initializing the landing probability vectors in matrices $\mathbf{X}_c := \mathbf{P}_c^{(K)}$ and $\check{\mathbf{X}}_c := \left[\mathbf{p}_c^{(1)} \cdots \mathbf{p}_c^{(K-1)} \mathbf{p}_c^{(K+1)}\right]$, $c \in \{+, -\}$. With $\mathbf{y} := \mathbf{X}_+ \boldsymbol{\theta} - \mathbf{X}_- \boldsymbol{\theta}$ and $\check{\mathbf{y}} := \check{\mathbf{X}}_+ \boldsymbol{\theta} - \check{\mathbf{X}}_- \boldsymbol{\theta}$ the γ -distinguishability threshold of the diffusion-based classifier is the smallest integer K_{γ} satisfying $\|\mathbf{y} - \check{\mathbf{y}}\| \leq \gamma$.

Theorem. For any diffusion-based classifier with coefficients θ constrained to a probability simplex of appropriate dimensions, it holds that

$$K_{\gamma} \leq \frac{1}{\mu'} \log \left[\frac{2\sqrt{d_{\max}}}{\gamma} \left(\sqrt{\frac{1}{d_{\min}} |\mathcal{L}_{-}|} + \sqrt{\frac{1}{d_{\min}} |\mathcal{L}_{+}|} \right) \right]$$

 $\begin{aligned} d_{\min +} &:= \min_{i \in \mathcal{L}_+} d_i, \ d_{\min -} := \min_{j \in \mathcal{L}_-} d_j, \ d_{\max} := \max_{i \in \mathcal{V}} d_i \text{ and } \mu' := \min\{\mu_2, 2 - \mu_N\}, \\ \{\mu_n\}_{n=1}^N & \text{eigenvalues of the normalized graph Laplacian in ascending order.} \end{aligned}$

□ Message: Increasing *K* does not help distinguishing between classes

Large K may even degrade performance due to over-parametrization

Unsupervised similarity learning

Algorithm 1 ADAPTIVE SIMILARITY EMBEDDING

Input: \mathcal{G} Output: E // Training phase $\Theta = \emptyset$ while $|\Theta| < T_s$ do $\mathcal{G}^-, \mathcal{S}^+, \mathcal{S}^- = \text{SAMPLE EDGES}(\mathcal{G})$ $\theta_{\mathcal{S}}^* = \text{TRAIN PARAMETERS}(\mathcal{G}^-, \mathcal{S}^+, \mathcal{S}^-)$ $\Theta = \Theta \cup \theta_{\mathcal{S}}^*$ end while $\theta^* = T_s^{-1} \sum_{\theta \in \Theta} \theta$ // Embedding phase $\mathbf{S} = \frac{1}{2} \left(\mathbf{I} + \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \right)$ $\mathbf{S} = \mathbf{U}_d \Sigma_d \mathbf{U}_d^T$ $\Sigma_d(\theta^*) = \sum_{k=1}^K \theta_k^* \Sigma_d^k$ return $\mathbf{E} = \mathbf{U}_d \sqrt{\Sigma_d(\theta^*)}$

Algorithm 4 SIMPLEXSVM

Input: $\mathcal{X}, \mathcal{S}^+, \mathcal{S}^-$ Output: θ^* $\theta_0 = \frac{1}{K}\mathbf{1}, t = 1$ while $\|\theta_t - \theta_{t-1}\|_{\infty} \ge \text{tol do}$ $t = t + 1, \eta_t = a/\sqrt{t}$ $\mathcal{S}_a^+ = \{e \in \mathcal{S}^+ | \mathbf{x}_e^T \theta_{t-1} \le \epsilon\}$ $\mathcal{S}_a^- = \{e \in \mathcal{S}^- | \mathbf{x}_e^T \theta_{t-1} \ge -\epsilon\}$ $\mathbf{g}_t = \sum_{e \in \mathcal{S}_a^-} \mathbf{x}_e - \sum_{e \in \mathcal{S}_a^+} \mathbf{x}_e$ $\mathbf{z}_t = (1 - 2\eta_t \lambda)\theta_{t-1} - \frac{\eta_t}{N_s}\mathbf{g}_t$ $\theta_t = \text{SIMPLEXPROJ}(\mathbf{z}_t)$ end while return θ_t

Algorithm 2 SAMPLE EDGES

```
Input: \mathcal{G} Output: \mathcal{G}^-, \mathcal{S}^+, \mathcal{S}^-
// Sample edges
\mathcal{S}^+ = \emptyset, \mathcal{G}^- = \mathcal{G}
while |\mathcal{S}^+| < N_s/2 do
      Sample v_1 \sim \text{Unif}(\mathcal{V})
      if |\mathcal{N}_{G^{-}}(v_1)| > 1 then
            Sample v_2 \sim \text{Unif} \left( \mathcal{N}_{\mathcal{G}^-}(v_1) \right)
            if |N_{G^-}(v_2)| > 1 then
                  \mathcal{S}^+ = \mathcal{S}^+ \cup (v_1, v_2)
                  \mathcal{G}^- = \mathcal{G}^- \setminus (v_1, v_2)
            end if
      end if
end while
// Sample non-edges
S^- = \emptyset
while |\mathcal{S}^-| < N_s/2 do
      Sample (v_1, v_2) \sim \text{Unif} (\mathcal{V} \times \mathcal{V})
      if (v_1, v_2) \notin \mathcal{E} then
            \mathcal{S}^- = \mathcal{S}^- \cup (v_1, v_2)
      end if
end while
return \mathcal{G}^-, \mathcal{S}^+, \mathcal{S}^-
```

Algorithm 3 TRAIN PARAMETERS

Input: $\mathcal{G}, \mathcal{S}^+, \mathcal{S}^-$ Output: $\theta_{\mathcal{S}}^*$ $\mathbf{S} = \frac{1}{2} \left(\mathbf{I} + \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \right)$ $\mathbf{S} = \mathbf{U}_d \Sigma_d \mathbf{U}_d^T$ $\mathcal{S} = \mathcal{S}^+ \cup \mathcal{S}^-$ Form $\mathcal{X}_{\mathcal{S}} = \{\mathbf{x}_{(i,j)}\}_{(i,j)\in\mathcal{S}}$ as in (30) return $\theta_{\mathcal{S}}^* = \text{SIMPLEXSVM}(\mathcal{X}_{\mathcal{S}}, \mathcal{S}^+, \mathcal{S}^-)$

ASE parameter sensitivity

