
Minneapolis, Jan. 25, 2019

Dept. of ECE and Digital Tech. Center, University of Minnesota

Adaptive Techniques for

Learning over Graphs

ICASSP2017

Dimitris Berberidis

Acknowledgements: Profs G. B. Giannakis, G. Karypis, Z. Zhang, and M. Hong

PhD Final Oral Exam

Motivation

2

Graph representations

Real networks Data similarities

❑ Challenges

➢ Graphs can be huge with few/none/unreliable labels available

➢ Graphs from different sources may have different properties

❑ Objectives: Learn-over/ mine/ manipulate real world graphs

Roadmap-Timeline

3

Active Learning on Graphs

Tuned Personalized PageRank

Adaptive Diffusions (random-walks)

Adaptive Similarity Node Embeddings

Focusing on the classifier…

Generalizing PageRank…

Unsupervised setting… This talk

Semi-supervised node classification

4

❑ Graph

➢ Weighted adjacency matrix

➢ Label per node

❑ Topology given or identifiable

Goal: Given labels on learn unlabeled nodes

❑ Main assumption

➢ Graph topology relevant to label patterns

Work in context

5

❑ Non-parametric semi-supervised learning (SSL) on graphs

➢ Graph partitioning [Joachims et al ‘03]

➢ Manifold regularization [Belkin et al ‘06]

➢ Label propagation [Zhu et al’03, Bengio et al‘06]

➢ Bootstrapped label propagation [Cohen‘17]

➢ Competitive infection models [Rosenfeld‘17]

❑ Node embedding + classification of vectors

➢ Node2vec [Grover et al ’16]

➢ Planetoid [Yang et al ‘16]

➢ Deepwalk [Perozzi et al ‘14]

❑ Graph convolutional networks (GCNs)

➢ [Atwood et al ‘16], [Kipf et al ‘16]

Random walks for SSL

6

❑ Consider a Random Walk on with transition matrix .

❑ K-step “landing” prob. of a walk “rooted” on the labeled nodes of each class.

❑ Classify the unlabeled nodes as

❑ Use the landing probabilities to create an “influence” vector for each class

❑ Fixed θ: Pers. PageRank (PPR) [Lin’10] , Heat kernel (HK) [Chung’07]

Our contribution: Graph- and label-adaptive selection of

7

Normalized label

indicator vector

AdaDIF

8

AdaDIF complexity and the choice of K

❑ Main message:

➢ Increasing K does not help distinguishing between classes

➢ For most graphs a very small K suffices → AdaDIF will be very efficient!

➢ If K needs to be large: Dictionary of Diffusions

.

Theorem For any diffusion-based classifier with coefficients constrained to a

probability simplex of appropriate dimensions, it holds that

where

with the eigenvalues of the normalized graph Laplacian in ascending order.

❑ Complexity linear in nnz(H) and quadratic in K.

➢ Trading flexibility for complexity linear in both nnz(H) and K

9

Bound in practice

Real data tests

10

❑ HK and PR run to convergence -- AdaDIF relies just on K=20

➢ Micro-F1: node-centric accuracy measure

➢ Macro-F1: class-centric accuracy measure

➢ DeepWalk, Node2vec

➢ Planetoid, GCNN

➢ HK, PPR, Label Prop. (LP)

Competing baselines

Evaluation metrics

❑ Cross-validation for PPR (), HK (), Node2vec, AdaDIF (, mode)

➢ Extra labels needed by Planetoid / GCNN for early stopping

Multiclass graphs

11

❑ State-of-the-art performance

➢ Large margin improvement over Citeseer

Experimental Results II

12

❑ AdaDIF is significantly faster

than competing approaches

❑ Peak performance is typically

achieved for K around 20

Runtime Comparisons

Effect of K

Per-step analysis

13

❑ Accuracy of k-th landing probabilities is a type of “graph-signature”
Aggregation doesn’t always help !

D. Berberidis, A. N. Nikolakopoulos, and G. B. Giannakis, "Adaptive Diffusions for Scalable Learning over Graphs",

IEEE Transactions on Signal Processing 2019 (short version received Best Paper Award in KDD MLG '18)

Cora CiteSeer PubMed

Multilabel graphs

14

❑ AdaDIF approaches Node2vec Micro-F1 accuracy for PPI and BlogCatalog

➢ Significant improvement over non-adaptive PPR and HK for all graphs

❑ AdaDIF achieves state-of-the-art Macro-F1 performance

❑ Number of labels per node assumed known (typical)

➢ Evaluate accuracy of top-ranking classes

Diversity of class diffusions

15

Q: Why does AdaDIF perform much better than fixed HK/PPR in m. label case ?

A: Possibly due to large number of classes with diverse distributions….

AdaDIF naturally captures this diversity.

Plot of different class diffusion parameters for

a 10% sample of BlogCatalog

https://github.com/DimBer/SSL_lib

Anomaly identification - removal

16

❑ Alternating minimization converges to stationary point

❑ Remove outliers from and predict using

Group sparsity on

i.e., force consensus among

classes regarding which

nodes are outliers

❑ Joint optimization

❑ Model outliers as large residuals, captured by nnz entries of sparse vec.

❑ Leave-one-out loss: Quantifies how well each node is predicted by the rest

❑ ‘s obtained via different random walks ()

Testing classifier robustness

17

❑ Anomalies injected in Cora graph

➢ Go through each entry of

➢ With probability draw a label

➢ Replace

❑ For fixed , accuracy with improves as false samples are removed

➢ Less accuracy for (no anomalies), only useful samples removed (false alarms)

Testing anomaly detection performance

18

❑ ROC curve: Probability of detection vs probability of false alarms

➢ As expected, performance improves as decreases

Unsupervised node embedding

19

Objective: Per-node feature extraction preserving graph structure and properties

kNN, logistic reg., SVMs

K-means, etc.

classification
clustering link

prediction

recommendation

➢ Aim to preserve some pairwise similarity

critical

H. Cai, V. W. Zheng, and K. Chang, “A comprehensive survey of graph embedding: problems, techniques and

applications,” IEEE Trans. on Knowledge and Data Engineering, vol. 30, no. 9, pp. 1616– 1637, 2018.

Node Embedding via matrix factorization

20

❑ Embedding ≡ Low-rank factorization of (symmetric)

❑ For loss and similarities

❑ Using Truncated(T) SVD is

➢ Fast if and

❑ Most approaches use a fixed

➢ Few parametrize and tune parameters using labels (e.g., Nod2vec)

Our contribution: Adapt to efficiently and w/o supervision

Multi-length node similarities

21

❑ Similarity matrix parametrization

➢ Weigh k-length (non-Hamiltonian) paths with

❑ “Base” similarity must follow graph sparsity pattern (e.g.,)

❑ No explicit formation of dense

➢ Only TSVD of is needed

➢ Polynomial obeyed by TSVD if

Capturing spectral information

22

❑ If base similarity matrix is PSD

❑ Multi-length embeddings given as weighted eigenvectors

❑ All requirements (symmetry, sparsity pattern, PSD) can be met

➢ Same eigenvectors as spectral clustering

➢ Can be shown that

➢ Large weights to longer paths shrink “detailed” eigenvectors

Random-walk interpretation

23

❑ Node similarity as function of landing probabilities weighted at different lengths

➢ Each length is not freely parametrized (lazy random walks)

➢ Dictionary-of-diffusions type

24

Numerical study of model

❑ Assume edges are generated according to model

❑ “True” similarities

❑ Quality-of-match (QoM) of estimated similarities

25

Numerical experiments on SBMs

❑ Stochastic block model with 3 clusters of equal size

❑ SBM probabilities matrix (p>q, c<1)

❑ “True” similarities given by SBM parameters

❑ Evaluation of different scenarios with N=150, and 100 experiments

➢ Comparison of with baseline node similarities

Behavior of various similarities

26
https://github.com/DimBer/ASE-project/tree/master/sim_tests

Quality of match (QoM) results

27

❑ Main observations

➢ For structured graphs there exists a “sweet spot” of k’s

➢ can match “true” similarities better than

Disclaimer: To be determined whether can yield superior link prediction

Q: Can we find the “sweet spot” from only one ?

D. Berberidis and G. B. Giannakis, " Adaptive-similarity node embedding for Scalable Learning over

Graphs", IEEE Transactions on Knowledge and Data Engineering (submitted 2018)

Step 3) Train SVM parameters to separate and

➢ Use ‘s for as features

Adaptive Similarity Embedding (ASE)

28

Step 1) Draw edge samples and with

➢ Samples must be representative but w. min. spectral perturbation*

➢ Sampling wp very simple & strikes a good balance

Step 4) Repeat Steps 1-3 for different splits if variance is large (small sample)

➢ Convenient embedding similarity parametrization

Step 2) Build and do TSVD on

Step 5) TSVD on of full and return

A. Milanese, J. Sun, and T. Nishikawa, “Approximating spectral impact of structural

perturbations in large networks,” Physical Review E, vol. 81, no. 4, pp. 046–112, 2010.
*

➢ DeepWalk [Perozzi et al, ‘14]

➢ VERSE [Tsitsulin et al, ‘18]

➢ LINE [Tang et al, ‘15]

➢ HOPE [Ou et al, ‘16]

➢ Spectral (unweighted)

29

Experiments on real graphs

Competing baselines

❑ Comparison with

➢ Scalable methods

➢ No (or standardized) hyper-parameters

❑ Embedding dimension d = 100 (typical) for all methods

❑ ASE maximum length K=10 (since typically for k >10)

❑ Embeddings used as features for classification, link-prediction, and clustering

30

Validating parameter adaptation with labels

❑ ASE parameters >0 for lengths that perform well on labels

➢ Fully Unsupervised: No cross-validation or a-priori knowledge of labels

❑ Variability of ASE parameters among graphs

31

Node classification with logistic regression

❑ ASE has the highest accuracy in 5/8 cases

➢ Not clear which method is second best

➢ Spectral (unweighted) embeddings perform poorly

32

Link prediction on VK social network

❑ New friendships (≈ 20,000) appeared between Nov. 2016 and May 2017

➢ Only Nov. 2016 users considered

❑ Experiment [Tsitsulin et al., ‘18]

➢ Embeded Nov. 2016 network

➢ Sample ≈ 20,000 ``negative’’ edges

➢ Split positive and negative new edges to 50/50 training/testing

➢ Train logistic regression using Nov. 2016 features (on training edges)

➢ Classify test edges to positive and negative

❑ ASE second best

➢ Much more accurate than unweighted spectral embedding

33

Clustering with K-means++

❑ ASE “inherits” spectral clustering properties (high resolution limit)

❑ Evaluating average conductance per cluster wrt # of clusters

34

Runtime

❑ SVD based methods (ASE and HOPE) are very fast!

❑ Results are for shared-memory multi-threaded setup

➢ SLEPc with MPI (although for shared memory) was used for SVD

➢ SVD more memory demanding than LINE & VERSE

➢ LINE & VERSE could benefit more from massive parallelization

https://github.com/DimBer/ASE-project/tree/master/portable

https://github.com/DimBer/ASE-project/tree/master/scalable

35

Conclusions

❑ Diffusion / Random Walk – based approaches

➢ Simple, intuitive and flexible tool for graph - learning tasks

• Semi-supervised: Node classification

• Unsupervised: Node Embedding

➢ Scalable to large graphs

➢ Semi-supervised

• Simple models capture most of the information in “simple” data

• Adaptation to graph/class can boost performance in more complex cases

➢ Unsupervised

• Each graph has unique diffusion-based similarity pattern

• Such similarities can be identified with relative accuracy

❑ Observations

36

Related work and Ongoing Projects

❑ Personalized Diffusions for Top-N recommendation

➢ Random walks on (inferred) item graphs

➢ Adapting random-walk pattern of each user based on history

❑ Robust Semi-Supervised Classification

➢ RANdom Sampling And Consensus (RANSAC) + Diffusion-based classifiers

❑ Binary Node Embeddings / Node Hashing

➢ Each node is mapped to d bits

➢ Suitable for large networks (> 1 million nodes)

➢ Aim to compress graph and facilitate learning/mining tasks (e.g., kNN queries)

A. N. Nikolakopoulos, D. Berberidis, G. Karypis, and G. B. Giannakis, “Personalized Diffusions for Top-N
Recommendation,” International Conference on Machine Learning, submitted 2019.

37

Thank you !

Leave-one-out fitting loss

38

❑ Quantifies how well each (labeled) node is predicted by the rest

❑ Compact form

❑ Diffusion parameters

❑ ‘s obtained via different random walks ()

Anomaly identification - removal

39

❑ Alternating minimization converges to stationary point

❑ While, iterate:

❑ Remove outliers from and predict using

Residuals Row-wise soft-thresholding

Group sparsity on

i.e., force consensus among

classes regarding which

nodes are outliers

❑ Joint optimization

❑ Model outliers as large residuals, captured by nnz entries of sparse vec.

Random walks on graphs

40

❑ Position of random walker at step k :

➢ Transition probabilities

❑ Steady-state probs.

➢ Presumes undirected, connected, and non-bipartite graphs

➢ Not informative for SSL

❑ Step-k landing probabilities

➢ Measure influence of on every node in - informative for SSL!

Landing probabilities for SSL

41

❑ Random walk per class with

❑ Family of per-class diffusions

➢ Valid pmf with K-dim probability simplex

❑ Max-likelihood per-node classifier

➢ Per step landing probabilities found

by multiplying with sparse H

➢ Initial (“root”) probability distribution

Special case 1: Personalized page rank (PPR) diffusion [Lin‘10]

➢ Pmf of random walk with restart probability 1-α ; in steady-state

Unifying diffusion-based SSL

42

Special case 2: Heat kernel (HK) diffusion [Chung’07]

❑ HK and PPR have fixed parameters

Our key contribution: Graph- and label-adaptive selection of

➢ “Heat’’ flowing from roots after time t ; in steady-state

43

Interpretation

❑ The simplex constrain promotes sparsity in the diffusion coefficients

❑ For (smoothness-only),

➢ Weights concentrates on last landing prob.

❑ For (fit-only)

➢ Weights concentrate on first few landing prob.

D. Berberidis, A. N. Nikolakopoulos, and G. B. Giannakis, "AdaDIF: Adaptive Diffusions for Efficient Semi-supervised

Learning over Graphs", Proc. of IEEE Intl. Conf. on Big Data, Seattle, WA, Dec. 2018.

44

Adaptive diffusions

❑ AdaDIF scalable to large-scale graphs (K << N)

❑ Linear-quadratic

``Differential’’ landing prob.

Normalized label

indicator vector

AdaDIF in a nutshell

45

Interpretation and complexity

46

❑ For (smoothness-only),

➢ Weight concentrates on last landing prob.

❑ For (fit-only)

➢ Weight concentrates on first few landing probs

➢ Intuition: very short walks visit similarly labeled nodes

❑ AdaDIF targets a “sweet-spot” between the two

➢ Simplex constraint promotes sparsity on

❑ If , per-class complexity thanks to sparsity of H

➢ Same as non-adaptive HK and PPR; also parallelizable across classes

➢ Reflect on PPR and Google … just avoid K >>

47

On the choice of K

❑ Message: Increasing K does not help distinguishing between classes

➢ Large K may even degrade performance due to over-parametrization

Definition. Let and denote respectively the seed vectors for nodes of

class “+’’ and “-,’’ initializing the landing probability vectors in matrices ,

and , , .. With and ,

the -distinguishability threshold of the diffusion-based classifier is the smallest

integer satisfying

Theorem. For any diffusion-based classifier with coefficients constrained to a

probability simplex of appropriate dimensions, it holds that

and

eigenvalues of the normalized graph Laplacian in ascending order.

Unsupervised similarity learning

48

ASE parameter sensitivity

49

