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Motivation
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Graph representations

Real networks Data similarities

❑ Challenges 

➢ Graphs can be huge with few/none/unreliable labels available

➢ Graphs from different sources may have different properties 

❑ Objectives: Learn-over/ mine/ manipulate real world graphs



Roadmap-Timeline
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Active Learning on Graphs

Tuned Personalized PageRank 

Adaptive Diffusions (random-walks) 

Adaptive Similarity Node Embeddings

Focusing on the classifier…

Generalizing PageRank…

Unsupervised setting… This talk



Semi-supervised node classification
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❑ Graph 

➢ Weighted adjacency matrix

➢ Label               per node   

❑ Topology given or identifiable

Goal: Given labels on learn unlabeled nodes

❑ Main assumption

➢ Graph topology relevant to label patterns



Work in context
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❑ Non-parametric semi-supervised learning (SSL) on graphs

➢ Graph partitioning [Joachims et al ‘03]

➢ Manifold regularization [Belkin et al ‘06]

➢ Label propagation [Zhu et al’03, Bengio et al‘06]

➢ Bootstrapped label propagation [Cohen‘17]

➢ Competitive infection models [Rosenfeld‘17]

❑ Node embedding + classification of vectors

➢ Node2vec [Grover et al ’16]

➢ Planetoid [Yang et al ‘16 ]

➢ Deepwalk [Perozzi et al ‘14]

❑ Graph convolutional networks (GCNs)

➢ [ Atwood et al ‘16], [ Kipf et al ‘16]



Random walks for SSL
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❑ Consider a Random Walk on                       with transition matrix . 

❑ K-step “landing” prob. of a walk “rooted” on the labeled nodes of each class.

❑ Classify the unlabeled nodes as

❑ Use the landing probabilities to create an “influence” vector for each class 

❑ Fixed θ: Pers. PageRank (PPR) [Lin’10] , Heat kernel (HK) [Chung’07]

Our contribution: Graph- and label-adaptive selection of
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Normalized label 

indicator vector

AdaDIF
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AdaDIF complexity and the choice of K

❑ Main message:

➢ Increasing K does not help distinguishing between classes

➢ For most graphs a very small K suffices → AdaDIF will be very efficient!

➢ If K needs to be large: Dictionary of Diffusions

. 

Theorem  For any diffusion-based classifier with coefficients constrained to a 

probability simplex of appropriate dimensions, it holds that

where

with the eigenvalues of the normalized graph Laplacian in ascending order.  

❑ Complexity linear in nnz(H) and quadratic in K.

➢ Trading flexibility for complexity linear in both nnz(H) and K
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Bound in practice



Real data tests
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❑ HK and PR run to convergence -- AdaDIF relies just on K=20

➢ Micro-F1: node-centric accuracy measure

➢ Macro-F1: class-centric accuracy measure

➢ DeepWalk, Node2vec

➢ Planetoid, GCNN

➢ HK, PPR, Label Prop. (LP)

Competing baselines

Evaluation metrics

❑ Cross-validation for PPR (  ), HK (  ), Node2vec, AdaDIF (   , mode ) 

➢ Extra labels needed by Planetoid / GCNN for early stopping



Multiclass graphs
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❑ State-of-the-art performance

➢ Large margin improvement over Citeseer



Experimental Results II  
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❑ AdaDIF is significantly faster 

than competing approaches  

❑ Peak performance is typically 

achieved for K around 20

Runtime Comparisons 

Effect of K 



Per-step analysis
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❑ Accuracy of k-th landing probabilities is a type of “graph-signature”  
Aggregation doesn’t always help !

D. Berberidis, A. N. Nikolakopoulos, and G. B. Giannakis, "Adaptive Diffusions for Scalable Learning over Graphs", 

IEEE Transactions on Signal Processing 2019 (short version received Best Paper Award in KDD MLG '18) 

Cora CiteSeer PubMed



Multilabel graphs
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❑ AdaDIF approaches Node2vec Micro-F1 accuracy for PPI and BlogCatalog

➢ Significant improvement over non-adaptive PPR and HK for all graphs    

❑ AdaDIF achieves state-of-the-art Macro-F1 performance

❑ Number of labels per node assumed known (typical)

➢ Evaluate accuracy of top-ranking classes



Diversity of class diffusions
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Q: Why does AdaDIF perform much better than fixed HK/PPR in m. label case ?

A: Possibly due to large number of classes with diverse distributions….

AdaDIF naturally captures this diversity.

Plot of different class diffusion parameters for

a 10% sample of BlogCatalog

https://github.com/DimBer/SSL_lib



Anomaly identification - removal
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❑ Alternating minimization converges to stationary point

❑ Remove outliers                                             from      and predict      using 

Group sparsity on

i.e., force consensus among 

classes regarding which 

nodes are outliers

❑ Joint optimization

❑ Model outliers as large residuals, captured by nnz entries of sparse vec.

❑ Leave-one-out loss: Quantifies how well each node is predicted by the rest 

❑ ‘s obtained via      different random walks (                   )  



Testing classifier robustness
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❑ Anomalies injected in Cora graph

➢ Go through each entry                  of    

➢ With probability          draw a label

➢ Replace

❑ For fixed           , accuracy with                improves as false samples are removed

➢ Less accuracy for                     (no anomalies), only useful samples removed (false alarms)        



Testing anomaly detection performance
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❑ ROC curve: Probability of detection vs probability of false alarms

➢ As expected, performance improves as         decreases 



Unsupervised node embedding
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Objective: Per-node feature extraction preserving graph structure and properties

kNN, logistic reg., SVMs

K-means, etc. 

classification
clustering link 

prediction

recommendation

➢ Aim to preserve some pairwise similarity 

critical

H. Cai, V. W. Zheng, and K. Chang, “A comprehensive survey of graph embedding: problems, techniques and 

applications,” IEEE Trans. on Knowledge and Data Engineering, vol. 30, no. 9, pp. 1616– 1637, 2018.



Node Embedding via matrix factorization
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❑ Embedding ≡ Low-rank factorization of (symmetric) 

❑ For loss                                    and        similarities  

❑ Using Truncated(T) SVD                              is 

➢ Fast if                           and             

❑ Most approaches use a fixed       

➢ Few parametrize       and tune parameters using labels (e.g., Nod2vec)

Our contribution: Adapt to efficiently and w/o supervision



Multi-length node similarities
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❑ Similarity matrix parametrization

➢ Weigh k-length (non-Hamiltonian) paths with   

❑ “Base” similarity     must follow graph sparsity pattern (e.g.,                            )

❑ No explicit formation of dense

➢ Only TSVD of      is needed         

➢ Polynomial obeyed by TSVD if



Capturing spectral information
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❑ If base similarity matrix is PSD

❑ Multi-length embeddings given as weighted eigenvectors

❑ All requirements (symmetry, sparsity pattern, PSD) can be met

➢ Same eigenvectors as spectral clustering

➢ Can be shown that

➢ Large weights to longer paths shrink “detailed” eigenvectors



Random-walk interpretation
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❑ Node similarity as function of landing probabilities weighted at different lengths

➢ Each length is not freely parametrized (lazy random walks)

➢ Dictionary-of-diffusions type
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Numerical study of model 

❑ Assume edges are generated according to model

❑ “True” similarities

❑ Quality-of-match (QoM) of estimated similarities
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Numerical experiments on SBMs

❑ Stochastic block model with 3 clusters of equal size

❑ SBM probabilities matrix (p>q, c<1)

❑ “True” similarities given by SBM parameters

❑ Evaluation of different scenarios with N=150, and 100 experiments

➢ Comparison of      with baseline node similarities



Behavior of various similarities
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https://github.com/DimBer/ASE-project/tree/master/sim_tests



Quality of match (QoM) results
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❑ Main observations

➢ For structured graphs there exists a “sweet spot” of k’s

➢ can match “true” similarities better than         

Disclaimer: To be determined whether       can yield superior link prediction     

Q: Can we find the “sweet spot” from only one    ?

D. Berberidis and G. B. Giannakis, " Adaptive-similarity node embedding for Scalable Learning over 

Graphs", IEEE Transactions on Knowledge and Data Engineering (submitted 2018) 



Step 3) Train SVM parameters      to separate       and                                       

➢ Use         ‘s  for                             as features

Adaptive Similarity Embedding (ASE)
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Step 1) Draw edge samples               and                            with         

➢ Samples must be representative but w. min. spectral perturbation*

➢ Sampling wp very simple & strikes a good balance 

Step 4) Repeat Steps 1-3 for different splits if variance is large (small sample) 

➢ Convenient embedding similarity parametrization

Step 2) Build                             and do TSVD on           

Step 5) TSVD on     of full     and return    

A. Milanese, J. Sun, and T. Nishikawa, “Approximating spectral impact of structural 

perturbations in large networks,” Physical Review E, vol. 81, no. 4, pp. 046–112, 2010.
*



➢ DeepWalk [Perozzi et al, ‘14]

➢ VERSE [Tsitsulin et al, ‘18]

➢ LINE [Tang et al, ‘15]

➢ HOPE [Ou et al, ‘16]

➢ Spectral (unweighted)
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Experiments on real graphs

Competing baselines

❑ Comparison with

➢ Scalable methods 

➢ No (or standardized) hyper-parameters 

❑ Embedding dimension d = 100 (typical) for all methods

❑ ASE maximum length K=10 ( since typically              for k >10 )  

❑ Embeddings used as features for classification, link-prediction, and clustering  



30

Validating parameter adaptation with labels

❑ ASE parameters >0 for lengths that perform well on labels

➢ Fully Unsupervised: No cross-validation or a-priori knowledge of labels 

❑ Variability of ASE parameters among graphs
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Node classification with logistic regression

❑ ASE has the highest accuracy in 5/8 cases

➢ Not clear which method is second best 

➢ Spectral (unweighted) embeddings perform poorly  
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Link prediction on VK social network

❑ New friendships ( ≈ 20,000) appeared between Nov. 2016 and May 2017

➢ Only Nov. 2016 users considered 

❑ Experiment [Tsitsulin et al., ‘18]

➢ Embeded Nov. 2016 network

➢ Sample ≈ 20,000 ``negative’’ edges

➢ Split positive and negative new edges to 50/50 training/testing

➢ Train logistic regression using Nov. 2016 features (on training edges)

➢ Classify test edges to positive and negative

❑ ASE second best

➢ Much more accurate than unweighted spectral embedding
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Clustering with K-means++

❑ ASE “inherits” spectral clustering properties (high resolution limit) 

❑ Evaluating average conductance per cluster wrt # of clusters
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Runtime

❑ SVD based methods (ASE and HOPE) are very fast!

❑ Results are for shared-memory multi-threaded setup

➢ SLEPc with MPI (although for shared memory) was used for SVD

➢ SVD more memory demanding than LINE & VERSE

➢ LINE & VERSE could benefit more from massive parallelization

https://github.com/DimBer/ASE-project/tree/master/portable

https://github.com/DimBer/ASE-project/tree/master/scalable
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Conclusions

❑ Diffusion / Random Walk – based approaches

➢ Simple, intuitive and flexible tool for graph - learning tasks

• Semi-supervised: Node classification

• Unsupervised: Node Embedding

➢ Scalable to large graphs

➢ Semi-supervised

• Simple models capture most of the information in “simple” data  

• Adaptation to graph/class can boost performance in more complex cases 

➢ Unsupervised

• Each graph has unique diffusion-based similarity pattern  

• Such similarities can be identified with relative accuracy

❑ Observations 
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Related work and Ongoing Projects

❑ Personalized Diffusions for Top-N recommendation

➢ Random walks on (inferred) item graphs

➢ Adapting random-walk pattern of each user based on history  

❑ Robust Semi-Supervised Classification

➢ RANdom Sampling And Consensus (RANSAC) + Diffusion-based classifiers

❑ Binary Node Embeddings / Node Hashing

➢ Each node is mapped to d bits 

➢ Suitable for large networks ( > 1 million nodes )

➢ Aim to compress graph and facilitate learning/mining tasks (e.g., kNN queries)

A. N. Nikolakopoulos, D. Berberidis, G. Karypis, and G. B. Giannakis, “Personalized Diffusions for Top-N 
Recommendation,” International Conference on Machine Learning, submitted 2019.
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Thank you !



Leave-one-out fitting loss
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❑ Quantifies how well each (labeled) node is predicted by the rest 

❑ Compact form

❑ Diffusion parameters 

❑ ‘s obtained via      different random walks (                   )  



Anomaly identification - removal
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❑ Alternating minimization converges to stationary point

❑ While, iterate:

❑ Remove outliers                                             from      and predict      using 

Residuals Row-wise soft-thresholding

Group sparsity on

i.e., force consensus among 

classes regarding which 

nodes are outliers

❑ Joint optimization

❑ Model outliers as large residuals, captured by nnz entries of sparse vec.



Random walks on graphs
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❑ Position of random walker at step k : 

➢ Transition probabilities

❑ Steady-state probs. 

➢ Presumes undirected, connected, and non-bipartite graphs

➢ Not informative for SSL 

❑ Step-k landing probabilities

➢ Measure influence of         on every node in      - informative for SSL!              



Landing probabilities for SSL 
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❑ Random walk per class with

❑ Family of per-class diffusions

➢ Valid pmf with K-dim probability simplex

❑ Max-likelihood per-node classifier

➢ Per step landing probabilities found 

by multiplying with sparse H

➢ Initial (“root”) probability distribution 



Special case 1: Personalized page rank (PPR) diffusion [Lin‘10]

➢ Pmf of random walk with restart probability 1-α ; in steady-state                               

Unifying diffusion-based SSL
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Special case 2: Heat kernel (HK) diffusion [Chung’07]

❑ HK and PPR have fixed parameters                    

Our key contribution: Graph- and label-adaptive selection of

➢ “Heat’’ flowing from roots after time t ; in steady-state                     
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Interpretation

❑ The simplex constrain promotes sparsity in the diffusion coefficients

❑ For               (smoothness-only),             

➢ Weights concentrates on last landing prob.

❑ For              (fit-only)

➢ Weights concentrate on first few landing prob.  

D. Berberidis, A. N. Nikolakopoulos, and G. B. Giannakis, "AdaDIF: Adaptive Diffusions for Efficient Semi-supervised 

Learning over Graphs", Proc. of IEEE Intl. Conf. on Big Data, Seattle, WA, Dec. 2018. 
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Adaptive diffusions

❑ AdaDIF scalable to large-scale graphs (K << N) 

❑ Linear-quadratic

``Differential’’ landing prob. 

Normalized label 

indicator vector



AdaDIF in a nutshell
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Interpretation and complexity 
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❑ For               (smoothness-only),             

➢ Weight concentrates on last landing prob.

❑ For              (fit-only)

➢ Weight concentrates on first few landing probs

➢ Intuition: very short walks visit similarly labeled nodes

❑ AdaDIF targets a “sweet-spot” between the two

➢ Simplex constraint promotes sparsity on 

❑ If                  , per-class complexity                    thanks to sparsity of H  

➢ Same as non-adaptive HK and PPR; also parallelizable across classes

➢ Reflect on PPR and Google … just avoid K >> 
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On the choice of K

❑ Message: Increasing K does not help distinguishing between classes

➢ Large K may even degrade performance due to over-parametrization

Definition. Let       and       denote respectively the seed vectors for nodes of 

class “+’’ and “-,’’  initializing the landing probability vectors in matrices                ,      

and                                   , ,                .. With                             and                       , 

the  -distinguishability threshold of the diffusion-based classifier is the smallest 

integer satisfying 

Theorem.  For any diffusion-based classifier with coefficients     constrained to a 

probability simplex of appropriate dimensions, it holds that

and

eigenvalues of the normalized graph Laplacian in ascending order. 



Unsupervised similarity learning
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ASE parameter sensitivity
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