Adaptive Diffusions for Scalable and Robust Learning over Graphs

D. K. Berberidis

Georgios B. Giannakis

A. N. Nikolakopoulos

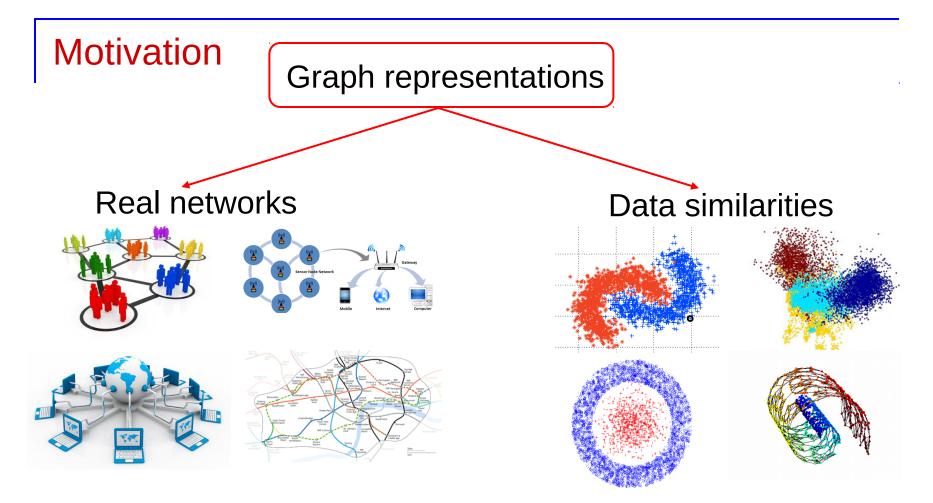
Dept. of ECE and Digital Tech. Center, University of Minnesota

Acknowledgments: NSF 1500713,1711471, NIH 1R01GM104975-01



UNIVERSITY OF MINNESOTA Driven to Discover™

Shanghai, P. R. China July 2, 2018



Objective: Learn values or labels of graph nodes, as e.g., in citation networks

Challenges: Graphs can be huge and are scarcely labeled

Due to privacy, cost of battery, (un) reliable human annotators ...

Problem statement

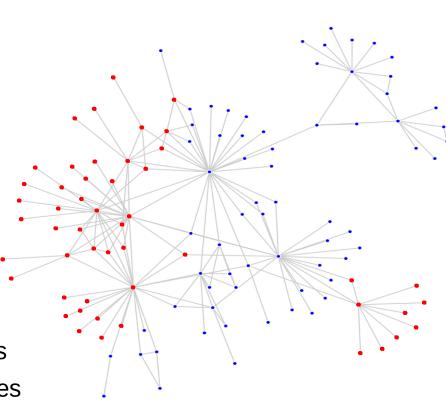
 $\Box \text{ Graph } \mathcal{G} := \{\mathcal{V}, \mathcal{E}\}$

 \succ Weighted adjacency matrix ${f W}$

 \blacktriangleright Label $y_i \in \mathcal{Y}$ per node v_i

- Topology given or identifiable
 - Given in e.g. WSNs and social nets
 - Identifiable via e.g., nodal similarities

Goal: Given labels on
$$\mathcal{L}\subseteq\mathcal{V}$$
 learn unlabeled nodes $\ \mathcal{U}:=\mathcal{V}/\mathcal{L}$



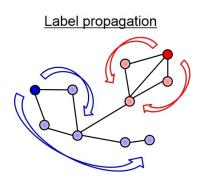
Work in context

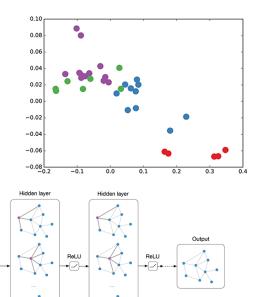
Non-parametric semi-supervised learning (SSL) on graphs

- Graph partitioning [Joachims et al '03]
- Manifold regularization [Belkin et al '06]
- Label propagation [Zhu et al'03, Bengio et al'06]
- Bootstrapped label propagation [Cohen'17]
- Competitive infection models [Rosenfeld'17]
- Node embedding + classification of vectors
 - Node2vec [Grover et al '16]
 - Planetoid [Yang et al '16]
 - Deepwalk [Perozzi et al '14]

Graph convolutional networks (GCNs)

[Atwood et al '16], [Kipf et al '16]





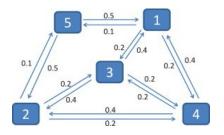
Random walks on graphs

Position of random walker at step $k : X_k \in \mathcal{V}$

Transition probabilities

$$\Pr\{X_k = i | X_{k-1} = j\} = W_{ij}/d_j$$

:= $[\mathbf{H}]_{ij} = [\mathbf{W}\mathbf{D}^{-1}]_{ij}$



Steady-state probs.

$$\pi_i := \lim_{k \to \infty} \sum_{j \in \mathcal{V}} \Pr\{X_k = i | X_0 = j\} \Pr\{X_0 = j\} = \frac{d_i}{2|\mathcal{E}|}$$

- Presumes undirected, connected, and non-bipartite graphs
- Not informative for SSL
- Step-*k* landing probabilities $p_i^{(k)} := \sum_{j \in \mathcal{V}} \Pr\{X_k = i | X_0 = j\} \Pr\{X_0 = j\}$ $\mathbf{p}^{(k)} = \mathbf{H}^k \mathbf{p}^{(0)} := [p_1^{(k)} \dots p_N^{(k)}]^T$
 - Measure influence of $\mathbf{p}^{(0)}$ on every node in γ informative for SSL!

Landing probabilities for SSL

- **Q** Random walk per class with $\mathbf{p}_c^{(k)} = \mathbf{H}^k \mathbf{v}_c$
 - \succ Initial ("root") probability distribution
 - Per step landing probabilities found by multiplying with sparse H

$$\mathbf{P}_{c}^{(K)} \coloneqq \begin{bmatrix} \mathbf{p}_{c}^{(1)} & \cdots & \mathbf{p}_{c}^{(K)} \end{bmatrix}$$
$$[\mathbf{v}_{c}]_{i} = \begin{cases} 1/|\mathcal{L}_{c}|, & i \in \mathcal{L}_{c} \\ 0, & \text{else} \end{cases}$$
$$\mathcal{L}_{c} \coloneqq \{i \in \mathcal{L} \colon y_{i} = c\}$$

$$\mathcal{L}_c := \{i \in \mathcal{L} : y_i = c\}$$

Family of per-class diffusions

$$\mathbf{f}_{c}(\boldsymbol{\theta}) := \sum_{k=1}^{K} \theta_{k} \mathbf{p}_{c}^{(k)} = \mathbf{P}_{c}^{(K)} \boldsymbol{\theta}, \quad \boldsymbol{\theta} \in \mathcal{S}^{K}$$

Valid pmf with K-dim probability simplex

$$\mathcal{S}^{K} := \{ \boldsymbol{\theta} \in \mathbb{R}^{K} : \ \boldsymbol{\theta} \geq \mathbf{0}, \ \mathbf{1}^{\mathsf{T}} \boldsymbol{\theta} = 1 \}$$

$$\hat{y}_i(\boldsymbol{\theta}) := \arg \max_{c \in \mathcal{Y}} [\mathbf{f}_c(\boldsymbol{\theta})]_i$$

Unifying diffusion-based SSL

Special case 1: Personalized page rank (PPR) diffusion [Lin'10]

$$\mathbf{f}_{c}(\boldsymbol{\theta}_{\mathrm{PPR}}) = (1-\alpha) \sum_{k=1}^{K} \alpha^{k} \mathbf{p}_{c}^{(k)} \quad \boldsymbol{\theta}_{\mathrm{PPR}} := (1-\alpha) \left[\alpha \cdots \alpha^{K} \right]^{\mathsf{T}}, \ \alpha \in (0,1)$$

> Pmf of random walk with restart probability 1- α ; in steady-state

$$\lim_{K \to \infty} \mathbf{f}_c(\boldsymbol{\theta}_{\text{PPR}}) = (1 - \alpha)(\mathbf{I} - \alpha \mathbf{H})^{-1} \mathbf{v}_c$$

Special case 2: Heat kernel (HK) diffusion [Chung'07]

$$\mathbf{f}_{c}(\boldsymbol{\theta}_{\mathrm{HK}}) = e^{-t} \sum_{k=0}^{K} \frac{t^{k}}{k!} \mathbf{p}_{c}^{(k)} \qquad \boldsymbol{\theta}_{\mathrm{HK}} := e^{-t} \begin{bmatrix} t & \frac{t^{2}}{2} & \cdots & \frac{t^{K}}{K!} \end{bmatrix}^{\mathsf{T}}, \ t > 0$$

 \succ "Heat" flowing from roots after time t; in steady-state

$$\lim_{K\to\infty} \mathbf{f}_c(\boldsymbol{\theta}_{\mathrm{HK}}) = e^{-t(\mathbf{I}-\mathbf{H})} \mathbf{v}_c$$

 \square HK and PPR have fixed parameters (t, α)

Our key contribution: Graph- and label-adaptive selection of $\boldsymbol{\theta}_c \in \mathcal{S}^K$

Adaptive diffusions

$$\hat{\mathbf{f}}_{c} = \arg\min_{\mathbf{f}\in\mathbb{R}^{N}} \ell(\mathbf{y}_{\mathcal{L}_{c}}, \mathbf{f}) + \lambda R(\mathbf{f})$$
Normalized label

$$\ell(\mathbf{y}_{\mathcal{L}_{c}}, \mathbf{f}) = \sum_{i\in\mathcal{L}} \frac{1}{d_{i}} (y_{i} - f_{i})^{2} = (\bar{\mathbf{y}}_{\mathcal{L}_{c}} - \mathbf{f})^{\mathsf{T}} \mathbf{D}_{\mathcal{L}}^{-1} (\bar{\mathbf{y}}_{\mathcal{L}_{c}} - \mathbf{f})$$

$$R(\mathbf{f}) = \frac{1}{2} \sum_{i\in\mathcal{V}} \sum_{j\in\mathcal{N}_{i}} \left(\frac{f_{i}}{d_{i}} - \frac{f_{j}}{d_{j}}\right)^{2} = \mathbf{f}^{\mathsf{T}} \mathbf{D}^{-1} \mathbf{L} \mathbf{D}^{-1} \mathbf{f}$$

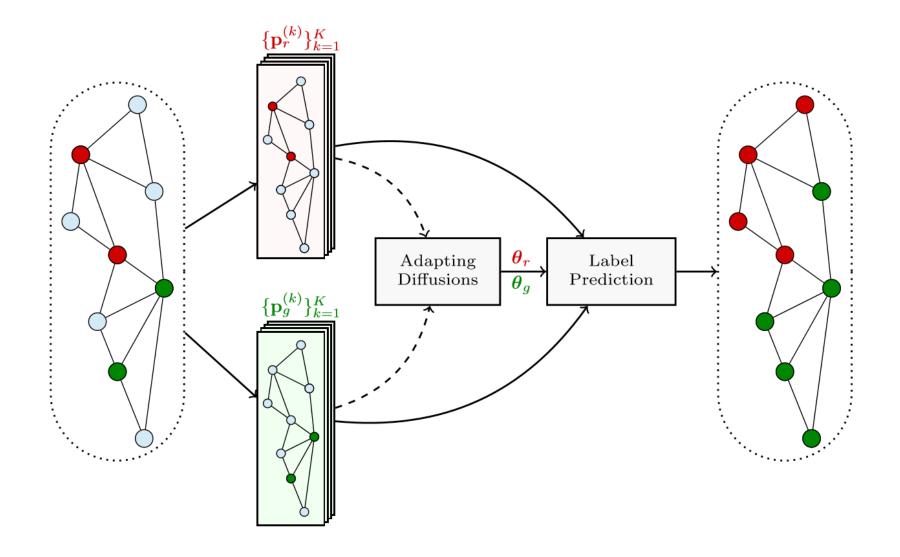
AdaDIF scalable to large-scale graphs (K << N)

$$\hat{\boldsymbol{\theta}}_{c} = \arg\min_{\boldsymbol{\theta}\in\mathcal{S}^{K}} \ell(\mathbf{y}_{\mathcal{L}_{c}}, \mathbf{f}_{c}(\boldsymbol{\theta})) + \lambda R(\mathbf{f}_{c}(\boldsymbol{\theta}))$$

Linear-quadratic

$$\hat{\boldsymbol{\theta}}_{c} = \arg\min_{\boldsymbol{\theta}\in\mathcal{S}^{K}} \boldsymbol{\theta}^{\mathsf{T}}\mathbf{A}_{c}\boldsymbol{\theta} + \boldsymbol{\theta}^{\mathsf{T}}\mathbf{b}_{c}$$

AdaDIF in a nutshell



Interpretation and complexity

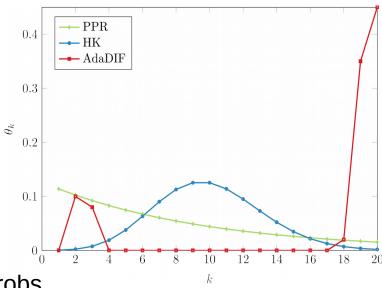
$$\hat{\boldsymbol{\theta}}_{c} = \arg\min_{\boldsymbol{\theta}\in\mathcal{S}^{K}} \ell(\mathbf{y}_{\mathcal{L}_{c}}, \mathbf{f}_{c}(\boldsymbol{\theta})) + \lambda R(\mathbf{f}_{c}(\boldsymbol{\theta}))$$

□ For $\lambda \to \infty$ (smoothness-only), $\hat{\theta}_c \to \mathbf{e}_K$ ➢ Weight concentrates on last landing prob.

For $\lambda \to 0$ (fit-only)

Weight concentrates on first few landing probs

- AdaDIF targets a "sweet-spot" between the two
 - \succ Simplex constraint promotes sparsity on θ
- If $K < |\mathcal{E}|/N$, per-class complexity $\mathcal{O}(|\mathcal{E}|K)$ thanks to sparsity of **H**
 - Same as non-adaptive HK and PPR; also parallelizable across classes
 - Reflect on PPR and Google ... just avoid K >>



Boosting AdaDIF

Dictionary of D << K diffusions

$$\mathbf{f}_{c}(\boldsymbol{\theta}) = \sum_{k=1}^{K} a_{k}(\boldsymbol{\theta}) \mathbf{p}_{c}^{(k)} = \mathbf{P}_{c}^{(K)} \mathbf{a}(\boldsymbol{\theta}) = \mathbf{P}_{c}^{(K)} \mathbf{C}\boldsymbol{\theta}$$
$$\mathbf{C} := \left[\mathbf{c}_{1} \cdots \mathbf{c}_{D}\right] \in \mathbb{R}^{K \times D}$$

- Dictionary may include PPR, HK, and more
- $\succ \text{ Complexity } \mathcal{O}(|\mathcal{E}|(K+D))$
- Unconstrained diffusions (relax simplex constraints $\theta_i \in \mathbb{R}$)
 - Retain hyperplane constraint to avoid all-zero solution
 - Closed-form solution

$$\hat{oldsymbol{ heta}}_c = \mathbf{A}_c^{-1} (\mathbf{b}_c - \lambda^* \mathbf{1}) \qquad \lambda^* = rac{\mathbf{1}^\mathsf{T} \mathbf{A}_c^{-1} \mathbf{b}_c - 1}{\mathbf{b}^\mathsf{T} \mathbf{A}_c^{-1} \mathbf{b}_c}$$

On the choice of *K*

Definition. Let \mathbf{P}_+ and \mathbf{P}_- denote respectively the seed vectors for nodes of class "+" and "-," initializing the landing probability vectors in matrices $\mathbf{X}_c := \mathbf{P}_{\varsigma}^{(K)}$ and $\mathbf{\tilde{X}}_c := \begin{bmatrix} \mathbf{p}_c^{(1)} \cdots \mathbf{p}_c^{(K-1)} \mathbf{p}_c^{(K+1)} \end{bmatrix} \boldsymbol{\varsigma} \in \{+, -\} \dots$ With $\mathbf{y} := \mathbf{X}_+ \boldsymbol{\theta} - \mathbf{X}_- \boldsymbol{\theta} \qquad \mathbf{\tilde{y}} := \mathbf{\tilde{X}}_+ \boldsymbol{\theta} - \mathbf{\tilde{X}}_- \boldsymbol{\theta}$ and $\boldsymbol{\gamma}$, the -distinguishability threshold of the diffusion-based classifier is the smallest integer $\|\mathbf{y} - \mathbf{s}_{\mathsf{v}}^{\mathsf{v}}\| \mathbf{s}_{\mathsf{v}} \| \mathbf{s}_{\mathsf{v}} \|$.

Theorem. For any diffusion-based classifier with coefficients θ constrained to a probability simplex of appropriate dimensions, it holds that

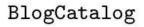
$$K_{\gamma} \leq \frac{1}{\mu'} \log \left[\frac{2\sqrt{d_{\max}}}{\gamma} \left(\sqrt{\frac{1}{d_{\min}} |\mathcal{L}_{-}|} + \sqrt{\frac{1}{d_{\min}} |\mathcal{L}_{+}|} \right) \right]$$

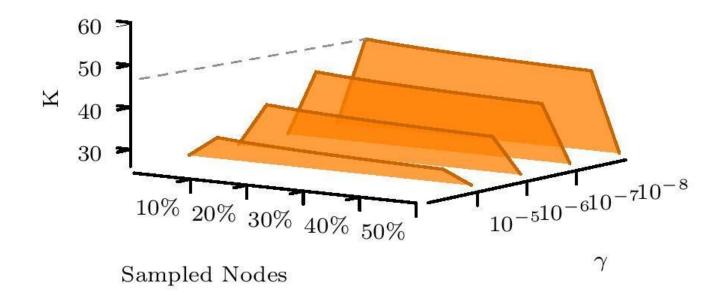
 $\begin{aligned} d_{\min +} &:= \min_{i \in \mathcal{L}_+} d_i, \ d_{\min -} := \min_{j \in \mathcal{L}_-} d_j, \ d_{\max} := \max_{i \in \mathcal{V}} d_i \text{ and } \mu' := \min\{\mu_2, 2 - \mu_N\}, \\ \{\mu_n\}_{n=1}^N & \text{eigenvalues of the normalized graph Laplacian in ascending order.} \end{aligned}$

Message: Increasing K does not help distinguishing between classes

Large K may even degrade performance due to over-parametrization

In practice

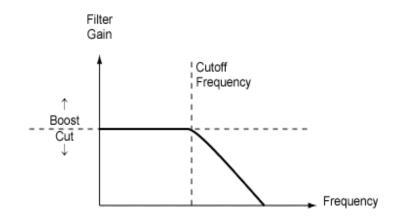




Contributions and links with GSP

AdaDif vis-à-vis graph filters [Sandryhaila-Moura '13, Chen et al '14]

- Different losses and regularizers, including those for outlier resilience
- Multiple class case readily addressed
- AdaDif's simplex constraint can afford
 - Random walk interpretation
 - Search space reduction
- Rigorous analysis using basic graph properties



AdaDif vis-a-vis GCNs

- Small number of constrained parameters: reduced overfitting
- Simpler and easily parallelizable training: no back propagation
- No feature inputs: operates naturally on graph-only settings

Real data tests

	Graph	$ \mathcal{V} $	$ \mathcal{E} $	$ \mathcal{Y} $	Multi-label
Real graphs	Citeseer	3,233	9,464	6	No
Citation networks	Cora	2,708	10,858	7	No
Plag potworks	PubMed	19,717	88,676	3	No
Blog networks	PPI (H. Sapiens)	3,890	76,584	50	Yes
Protein interaction network	Wikipedia	4,733	184,182	40	Yes
	BlogCatalog	10,312	333,983	39	Yes
F1 score = $2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}} =$	$2 \cdot \text{true positive} + \text{fa}$	alse posi		e neg	ative
 Micro-F1: node-centric accuracy m Macro-F1: class-centric accuracy r 	$\begin{array}{c} & & & & & \\ \text{leasure} & & & & \\ & & & \\ \hline & & & \\ \text{neasure} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right) $				
 HK and PR run with K =30 for convergence AdaDIF relies just on K=15 	60				→ PPR → HK - AdaDIF
	50 5	10	15	20	25 30
	, i i i i i i i i i i i i i i i i i i i		of landing prob	1 . 1	(17)

Multiclass graphs

- State-of-the-art performance
 - Large margin improvement over Citeseer

	Graph	uph Cora			Citeseer			PubMed		
	$ \mathcal{L} / \mathcal{V} $	2.5%	5%	10%	2.5%	5%	10%	0.25%	0.5%	1.0%
	AdaDIF	70.5 ± 2.4	73.7 ± 1.7	77.0 ± 1.0	51.9 ± 0.9	55.1 ± 1.0	58.6 ± 0.7	72.8 ± 2.4	76.1 ± 0.8	76.5 ± 0.5
	PPR	69.8 ± 2.5	73.3 ± 1.4	77.0 ± 1.0	49.7 ± 2.2	53.0 ± 1.5	57.5 ± 0.8	71.4 ± 2.6	74.4 ± 1.1	76.0 ± 0.8
Ē	HK	70.0 ± 2.4	73.5 ± 1.8	76.7 ± 1.2	50.0 ± 2.1	53.5 ± 1.5	57.3 ± 0.9	72.8 ± 2.6	75.1 ± 1.0	76.8 ± 0.7
cro-	Node2vec	69.5 ± 1.8	73.0 ± 1.6	75.5 ± 1.4	46.0 ± 2.7	49.7 ± 1.7	52.1 ± 1.4	72.8 ± 2.8	74.8 ± 1.6	75.1 ± 1.4
Micro	Deepwalk	68.2 ± 2.5	72.1 ± 1.8	74.9 ± 1.2	45.0 ± 2.4	48.5 ± 1.7	51.2 ± 1.2	72.4 ± 2.6	73.8 ± 1.3	74.5 ± 1.2
	Planetoid-G	62.5 ± 5.1	67.3 ± 4.3	75.8 ± 1.1	43.0 ± 1.8	46.8 ± 1.9	55.2 ± 1.3	63.4 ± 3.7	65.2 ± 2.0	67.8 ± 1.5
	GCN	58.3 ± 4.0	66.5 ± 2.1	71.3 ± 1.7	38.9 ± 2.7	44.5 ± 2.0	50.3 ± 1.6	57.7 ± 3.4	64.5 ± 2.7	70.0 ± 1.5
	AdaDIF	69.0 ± 2.3	72.3 ± 1.8	75.7 ± 1.2	46.6 ± 1.1	49.6 ± 1.6	53.9 ± 1.0	71.5 ± 2.5	74.2 ± 0.7	75.2 ± 0.8
	PPR	66.7 ± 4.2	71.8 ± 1.6	75.3 ± 1.1	44.1 ± 2.0	48.4 ± 1.5	53.5 ± 0.8	69.5 ± 2.6	72.8 ± 1.1	74.7 ± 0.8
Macro-F1	HK	67.1 ± 4.2	72.1 ± 1.9	75.5 ± 1.4	44.8 ± 2.0	48.9 ± 1.5	53.7 ± 1.0	71.0 ± 2.6	73.5 ± 1.1	75.6 ± 0.8
	Node2vec	67.1 ± 2.6	71.6 ± 1.8	74.0 ± 1.3	42.6 ± 2.5	46.6 ± 1.7	48.7 ± 1.3	70.3 ± 3.2	73.0 ± 1.8	73.5 ± 1.4
	Deepwalk	66.1 ± 3.2	70.5 ± 2.1	73.8 ± 1.4	41.6 ± 2.4	45.5 ± 1.5	48.5 ± 1.2	70.0 ± 3.2	72.0 ± 1.7	73.1 ± 1.3
	Planetoid-G	58.0 ± 5.1	64.3 ± 4.3	74.3 ± 1.6	37.4 ± 2.1	41.6 ± 2.2	52.0 ± 2.4	61.0 ± 3.9	63.7 ± 3.0	65.2 ± 2.0
	GCN	52.0 ± 6.8	61.9 ± 2.6	64.8 ± 1.9	33.0 ± 3.0	39.2 ± 1.7	43.3 ± 1.6	52.1 ± 4.4	60.2 ± 3.9	65.3 ± 2.2

Multilabel graphs

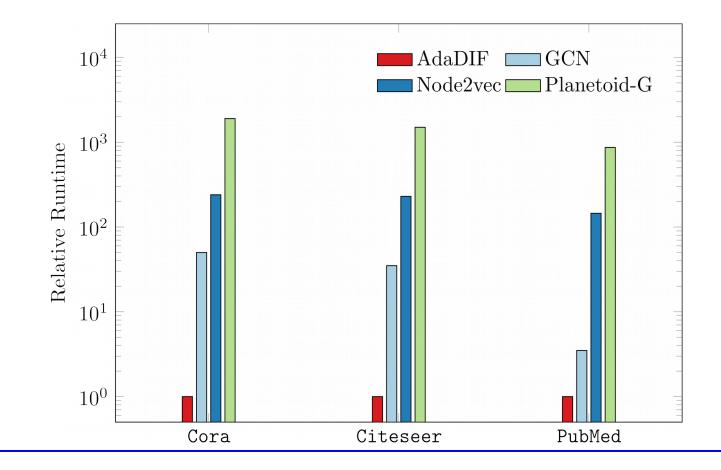
- Number of labels per node assumed known (typical)
 - Evaluate accuracy of top-ranking classes
- AdaDIF approaches Node2vec Micro-F1 accuracy for PPI and BlogCatalog
 - Significant improvement over non-adaptive PPR and HK for all graphs

AdaDIF achieves state-of-the-art Macro-F1 performance

	Graph	PPI			BlogCatalog			Wikipedia		
	$ \mathcal{L} / \mathcal{V} $	10%	20%	30%	10%	20%	30%	10%	20%	30%
Micro-F1	AdaDIF	15.4 ± 0.5	17.9 ± 0.7	19.2 ± 0.6	31.5 ± 0.6	34.4 ± 0.5	36.3 ± 0.4	28.2 ± 0.9	30.0 ± 0.5	31.2 ± 0.7
	PPR	13.8 ± 0.5	15.8 ± 0.6	17.0 ± 0.4	21.1 ± 0.8	23.6 ± 0.6	25.2 ± 0.6	10.5 ± 1.5	8.1 ± 0.7	7.2 ± 0.5
	HK	14.5 ± 0.5	16.7 ± 0.6	18.1 ± 0.5	22.2 ± 1.0	24.7 ± 0.7	26.6 ± 0.7	9.3 ± 1.4	7.3 ± 0.7	6.0 ± 0.7
	Node2vec	16.5 ± 0.6	18.2 ± 0.3	19.1 ± 0.3	35.0 ± 0.3	36.3 ± 0.3	37.2 ± 0.2	42.3 ± 0.9	44.0 ± 0.6	45.1 ± 0.4
	Deepwalk	16.0 ± 0.6	17.9 ± 0.5	18.8 ± 0.4	34.2 ± 0.4	35.7 ± 0.3	36.4 ± 0.4	41.0 ± 0.8	43.5 ± 0.5	44.1 ± 0.5
Macro-F1	AdaDIF	13.4 ± 0.6	15.4 ± 0.7	16.5 ± 0.7	23.0 ± 0.6	25.3 ± 0.4	27.0 ± 0.4	7.7 ± 0.3	8.3 ± 0.3	9.0 ± 0.2
	PPR	12.9 ± 0.4	14.7 ± 0.5	15.8 ± 0.4	17.3 ± 0.5	19.5 ± 0.4	20.8 ± 0.3	4.4 ± 0.3	3.8 ± 0.6	3.6 ± 0.2
	HK	13.4 ± 0.6	15.4 ± 0.5	16.5 ± 0.4	18.4 ± 0.6	20.7 ± 0.4	22.3 ± 0.4	4.2 ± 0.4	3.7 ± 0.5	3.5 ± 0.2
	Node2vec	13.1 ± 0.6	15.2 ± 0.5	16.0 ± 0.5	16.8 ± 0.5	19.0 ± 0.3	20.1 ± 0.4	7.6 ± 0.3	8.2 ± 0.3	8.5 ± 0.3
	Deepwalk	12.7 ± 0.7	15.1 ± 0.6	16.0 ± 0.5	16.6 ± 0.5	18.7 ± 0.5	19.6 ± 0.4	7.3 ± 0.3	8.1 ± 0.2	8.2 ± 0.2

Runtime comparison

- AdaDIF can afford much lower runtimes
 - Even without parallelization!



Leave-one-out fitting loss

Quantifies how well each (labeled) node is predicted by the rest

$$\ell_{\rm rob}^c(\mathbf{y}_{\mathcal{L}_c}, \boldsymbol{\theta}) := \sum_{i \in \mathcal{L}} \frac{1}{d_i} \left([\bar{\mathbf{y}}_{\mathcal{L}_c}]_i - [\mathbf{f}_c(\boldsymbol{\theta}; \mathcal{L} \setminus i)]_i \right)^2$$

 $\Box \mathbf{f}_c(\boldsymbol{\theta}; \mathcal{L} \setminus i)$'s obtained via $|\mathcal{L}|$ different random walks ($\mathcal{O}(|\mathcal{L}|K|\mathcal{E}|)$)

Compact form

$$\ell_{\text{rob}}^{c}(\mathbf{y}_{\mathcal{L}_{c}}, \boldsymbol{\theta}) := \|\mathbf{D}_{\mathcal{L}}^{-\frac{1}{2}}\left(\bar{\mathbf{y}}_{\mathcal{L}_{c}} - \mathbf{R}_{c}^{(K)}\boldsymbol{\theta}\right)\|_{2}^{2} \quad \left[\mathbf{R}_{c}^{(K)}\right]_{ik} := \begin{cases} \left[\mathbf{p}_{\mathcal{L}_{c}\setminus i}^{(k)}\right]_{i}, & i \in \mathcal{L}_{c} \\ \left[\mathbf{p}_{c}^{(k)}\right]_{i}, & \text{else} \end{cases}$$

Diffusion parameters

$$\hat{\boldsymbol{\theta}}_{c} = \arg\min_{\boldsymbol{\theta}\in\mathcal{S}^{K}} \ell_{\mathrm{rob}}^{c}(\mathbf{y}_{\mathcal{L}_{c}},\boldsymbol{\theta}) + \lambda_{\theta} \|\boldsymbol{\theta}\|_{2}^{2}$$

Anomaly identification - removal

lacksim Model outliers as large residuals, captured by nnz entries of sparse vec. $\mathbf{o} \in \mathbb{R}^N$

$$\ell_{\rm rob}^{c}(\mathbf{y}_{\mathcal{L}_{c}},\mathbf{o},\boldsymbol{\theta}) := \|\mathbf{D}_{\mathcal{L}}^{-\frac{1}{2}}\left(\mathbf{o} + \bar{\mathbf{y}}_{\mathcal{L}_{c}} - \mathbf{R}_{c}^{(K)}\boldsymbol{\theta}\right)\|_{2}^{2}$$

Joint optimization

Alternating minimization converges to stationary point

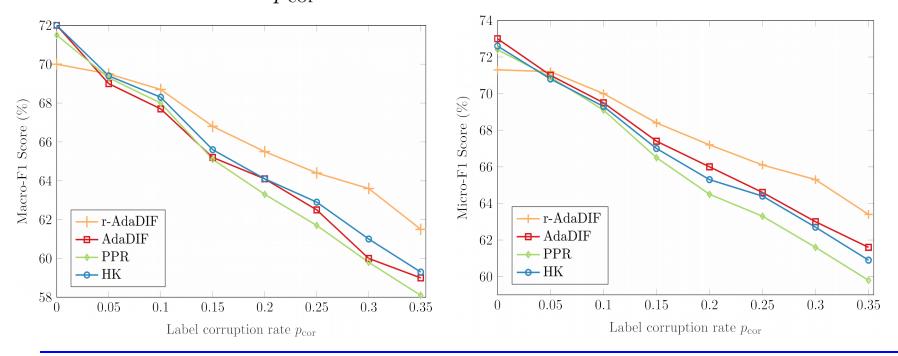
 $\square \text{ Remove outliers } \mathcal{S} := \{i \in \mathcal{L} : \| [\hat{\mathbf{O}}]_{i,:} \|_2 > 0\} \text{ from } \mathcal{L} \text{ and predict } \mathcal{U} \text{ using } \{\hat{\boldsymbol{\theta}}_c\}_{c \in \mathcal{Y}} \}$

Testing classification performance

- Anomalies injected in Cora graph
 - So through each entry $[\mathbf{y}_{\mathcal{L}}]_i = c$ of $\mathbf{y}_{\mathcal{L}}$
 - \succ With probability p_{cor} draw a label $c' \sim \text{Unif} \{ \mathcal{Y} \setminus c \}$
 - $\succ \quad \text{Replace } [\mathbf{y}_{\mathcal{L}}]_i \leftarrow c'$

 \square For fixed $\lambda_o > 0$, accuracy with $p_{cor} > 0$ improves as false samples are removed

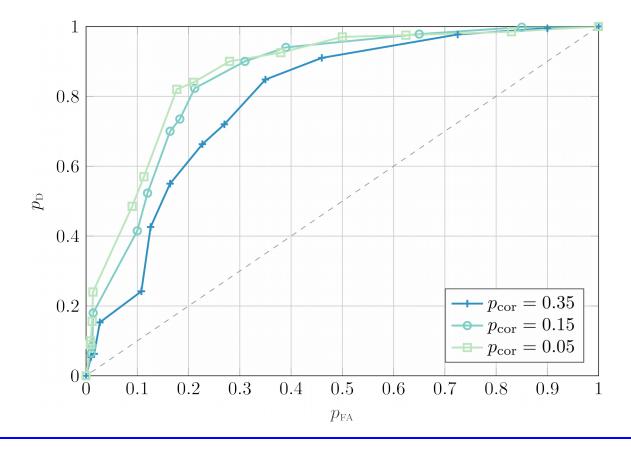
 \blacktriangleright Less accuracy for $p_{
m cor}=0$ (no anomalies), only useful samples removed (false alarms)



Testing anomaly detection performance

ROC curve: Probability of detection vs probability of false alarms

> As expected, performance improves as p_{cor} decreases



Research outlook

- Investigate different losses and diverse regularizers
- Further boost accuracy with nonlinear diffusion models
- Effect reduced complexity and memory requirements via approximations
- Online AdaDIF for dynamic graphs

Thank you!