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Motivation
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Graph representations

Objective: Learn values or labels of graph nodes, as e.g., in citation networks

Real networks Data similarities

Challenges: Graphs can be huge and are scarcely labeled

 Due to privacy, cost of battery, (un) reliable human annotators …



Problem statement
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 Graph 

 Weighted adjacency matrix

 Label               per node   

 Topology given or identifiable

 Given in e.g. WSNs and social nets

 Identifiable via e.g., nodal similarities 

Goal: Given labels on              learn unlabeled nodes  



Work in context
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  Non-parametric semi-supervised learning (SSL) on graphs
 Graph partitioning [Joachims et al ‘03]

 Manifold regularization [Belkin et al ‘06]

 Label propagation [Zhu et al’03, Bengio et al‘06]

 Bootstrapped label propagation [Cohen‘17]

 Competitive infection models [Rosenfeld‘17]

  Node embedding + classification of vectors
 Node2vec [Grover et al ’16]

 Planetoid [Yang et al ‘16 ]

 Deepwalk [Perozzi et al ‘14]

  Graph convolutional networks (GCNs)

 [ Atwood et al ‘16], [ Kipf et al ‘16]



Random walks on graphs
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  Position of random walker at step k : 

 Transition probabilities

  Steady-state probs. 

 Presumes undirected, connected, and non-bipartite graphs

 Not informative for SSL 

  Step-k landing probabilities

                 

 Measure influence of         on every node in      - informative for SSL!              



Landing probabilities for SSL 
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  Random walk per class with

  Family of per-class diffusions

   

 Valid pmf with K-dim probability simplex  

  Max-likelihood per-node classifier

 Per step landing probabilities found 

     by multiplying with sparse H    

 Initial (“root”) probability distribution    



Special case 1: Personalized page rank (PPR) diffusion [Lin‘10]

                                                         

 Pmf of random walk with restart probability 1-α ; in steady-state                       

        

Unifying diffusion-based SSL
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Special case 2: Heat kernel (HK) diffusion [Chung’07]

                     

  HK and PPR have fixed parameters                    

Our key contribution: Graph- and label-adaptive selection of                      

 “Heat’’ flowing from roots after time t ; in steady-state         
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Adaptive diffusions

 AdaDIF scalable to large-scale graphs (K << N) 

  Linear-quadratic

``Differential’’ landing prob. 

Normalized label 
indicator vector



AdaDIF in a nutshell
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Interpretation and complexity 
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  For               (smoothness-only),             

 Weight concentrates on last landing prob.

  For              (fit-only)

 Weight concentrates on first few landing probs  

 Intuition: very short walks visit similarly labeled nodes

  AdaDIF targets a “sweet-spot” between the two

 Simplex constraint promotes sparsity on 

  If                  , per-class complexity                    thanks to sparsity of H      

 Same as non-adaptive HK and PPR; also parallelizable across classes

 Reflect on PPR and Google … just avoid K >> 



Boosting AdaDIF
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 Dictionary of D << K diffusions

 Unconstrained diffusions (relax simplex constraints            )

 Retain hyperplane constraint to avoid all-zero solution

 Closed-form solution  

 Dictionary may include PPR, HK, and more

 Complexity 
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On the choice of K

  Message: Increasing K does not help distinguishing between classes

 Large K may even degrade performance due to over-parametrization

 Definition. Let       and       denote respectively the seed vectors for nodes of   
 class “+’’ and “-,’’  initializing the landing probability vectors in matrices                ,    
  and                                   ,  ,                .. With                             
and                       , the   -distinguishability threshold of the diffusion-based classifier 
is the smallest integer         satisfying 

 Theorem.  For any diffusion-based classifier with coefficients     constrained to a 
  probability simplex of appropriate dimensions, it holds that

and

eigenvalues of the normalized graph Laplacian in ascending order.  
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In practice



Contributions and links with GSP 
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 Different losses and regularizers, including those for outlier resilience

 Multiple class case readily addressed

 AdaDif’s simplex constraint can afford

  Rigorous analysis using basic graph properties

AdaDif vis-à-vis graph filters [Sandryhaila-Moura ‘13, Chen et al ‘14]

AdaDif vis-a-vis GCNs

 No feature inputs: operates naturally on graph-only settings

 Small number of constrained parameters: reduced overfitting

 Simpler and easily parallelizable training: no back propagation

 Random walk interpretation

 Search space reduction



Real data tests
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  Real graphs

 Citation networks

 Blog networks

 Protein interaction network

  HK and PR run with K =30 for convergence

 AdaDIF relies just on K=15

 Micro-F1: node-centric accuracy measure

 Macro-F1: class-centric accuracy measure



Multiclass graphs
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  State-of-the-art performance

 Large margin improvement over Citeseer   



Multilabel graphs
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❑  AdaDIF approaches Node2vec Micro-F1 accuracy for PPI and BlogCatalog

➢ Significant improvement over non-adaptive PPR and HK for all graphs    

❑ AdaDIF achieves state-of-the-art Macro-F1 performance

❑ Number of labels per node assumed known (typical)

➢ Evaluate accuracy of top-ranking classes



Runtime comparison 
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  AdaDIF can afford much lower runtimes

 Even without parallelization!  



Leave-one-out fitting loss
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 Quantifies how well each (labeled) node is predicted by the rest 

 Compact form

 Diffusion parameters 

                   ‘s obtained via      different random walks (                   )  



Anomaly identification - removal
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 Alternating minimization converges to stationary point

 While,                                                 iterate:

 Remove outliers                                             from      and predict      using 

Residuals Row-wise soft-thresholding

Group sparsity on

i.e., force consensus among 
classes regarding which 

nodes are outliers

 Joint optimization

 Model outliers as large residuals, captured by nnz entries of sparse vec.  



Testing classification performance
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 Anomalies injected in Cora graph

 Go through each entry                  of    

 With probability          draw a label

 Replace

 For fixed           , accuracy with                improves as false samples are removed
 Less accuracy for                     (no anomalies), only useful samples removed (false alarms)        



Testing anomaly detection performance
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 ROC curve: Probability of detection vs probability of false alarms

 As expected, performance improves as         decreases 
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Research outlook

 Investigate different losses and diverse regularizers 

 Further boost accuracy with nonlinear diffusion models

 Effect reduced complexity and memory requirements via approximations 

 Online AdaDIF for dynamic graphs
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