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Motivation
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Graph representations

Objective: Learn values or labels of graph nodes, as e.g., in citation networks

Real networks Data similarities

Challenges: Graphs can be huge and are scarcely labeled

 Due to privacy, cost of battery, (un) reliable human annotators …



Problem statement
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 Graph 

 Weighted adjacency matrix

 Label               per node   

 Topology given or identifiable

 Given in e.g. WSNs and social nets

 Identifiable via e.g., nodal similarities 

Goal: Given labels on              learn unlabeled nodes  



Work in context
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  Non-parametric semi-supervised learning (SSL) on graphs
 Graph partitioning [Joachims et al ‘03]

 Manifold regularization [Belkin et al ‘06]

 Label propagation [Zhu et al’03, Bengio et al‘06]

 Bootstrapped label propagation [Cohen‘17]

 Competitive infection models [Rosenfeld‘17]

  Node embedding + classification of vectors
 Node2vec [Grover et al ’16]

 Planetoid [Yang et al ‘16 ]

 Deepwalk [Perozzi et al ‘14]

  Graph convolutional networks (GCNs)

 [ Atwood et al ‘16], [ Kipf et al ‘16]



Random walks on graphs
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  Position of random walker at step k : 

 Transition probabilities

  Steady-state probs. 

 Presumes undirected, connected, and non-bipartite graphs

 Not informative for SSL 

  Step-k landing probabilities

                 

 Measure influence of         on every node in      - informative for SSL!              



Landing probabilities for SSL 
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  Random walk per class with

  Family of per-class diffusions

   

 Valid pmf with K-dim probability simplex  

  Max-likelihood per-node classifier

 Per step landing probabilities found 

     by multiplying with sparse H    

 Initial (“root”) probability distribution    



Special case 1: Personalized page rank (PPR) diffusion [Lin‘10]

                                                         

 Pmf of random walk with restart probability 1-α ; in steady-state                       

        

Unifying diffusion-based SSL
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Special case 2: Heat kernel (HK) diffusion [Chung’07]

                     

  HK and PPR have fixed parameters                    

Our key contribution: Graph- and label-adaptive selection of                      

 “Heat’’ flowing from roots after time t ; in steady-state         
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Adaptive diffusions

 AdaDIF scalable to large-scale graphs (K << N) 

  Linear-quadratic

``Differential’’ landing prob. 

Normalized label 
indicator vector



AdaDIF in a nutshell

9



Interpretation and complexity 
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  For               (smoothness-only),             

 Weight concentrates on last landing prob.

  For              (fit-only)

 Weight concentrates on first few landing probs  

 Intuition: very short walks visit similarly labeled nodes

  AdaDIF targets a “sweet-spot” between the two

 Simplex constraint promotes sparsity on 

  If                  , per-class complexity                    thanks to sparsity of H      

 Same as non-adaptive HK and PPR; also parallelizable across classes

 Reflect on PPR and Google … just avoid K >> 



Boosting AdaDIF
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 Dictionary of D << K diffusions

 Unconstrained diffusions (relax simplex constraints            )

 Retain hyperplane constraint to avoid all-zero solution

 Closed-form solution  

 Dictionary may include PPR, HK, and more

 Complexity 
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On the choice of K

  Message: Increasing K does not help distinguishing between classes

 Large K may even degrade performance due to over-parametrization

 Definition. Let       and       denote respectively the seed vectors for nodes of   
 class “+’’ and “-,’’  initializing the landing probability vectors in matrices                ,    
  and                                   ,  ,                .. With                             
and                       , the   -distinguishability threshold of the diffusion-based classifier 
is the smallest integer         satisfying 

 Theorem.  For any diffusion-based classifier with coefficients     constrained to a 
  probability simplex of appropriate dimensions, it holds that

and

eigenvalues of the normalized graph Laplacian in ascending order.  
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In practice



Contributions and links with GSP 
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 Different losses and regularizers, including those for outlier resilience

 Multiple class case readily addressed

 AdaDif’s simplex constraint can afford

  Rigorous analysis using basic graph properties

AdaDif vis-à-vis graph filters [Sandryhaila-Moura ‘13, Chen et al ‘14]

AdaDif vis-a-vis GCNs

 No feature inputs: operates naturally on graph-only settings

 Small number of constrained parameters: reduced overfitting

 Simpler and easily parallelizable training: no back propagation

 Random walk interpretation

 Search space reduction



Real data tests

15

  Real graphs

 Citation networks

 Blog networks

 Protein interaction network

  HK and PR run with K =30 for convergence

 AdaDIF relies just on K=15

 Micro-F1: node-centric accuracy measure

 Macro-F1: class-centric accuracy measure



Multiclass graphs
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  State-of-the-art performance

 Large margin improvement over Citeseer   



Multilabel graphs
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❑  AdaDIF approaches Node2vec Micro-F1 accuracy for PPI and BlogCatalog

➢ Significant improvement over non-adaptive PPR and HK for all graphs    

❑ AdaDIF achieves state-of-the-art Macro-F1 performance

❑ Number of labels per node assumed known (typical)

➢ Evaluate accuracy of top-ranking classes



Runtime comparison 
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  AdaDIF can afford much lower runtimes

 Even without parallelization!  



Leave-one-out fitting loss
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 Quantifies how well each (labeled) node is predicted by the rest 

 Compact form

 Diffusion parameters 

                   ‘s obtained via      different random walks (                   )  



Anomaly identification - removal
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 Alternating minimization converges to stationary point

 While,                                                 iterate:

 Remove outliers                                             from      and predict      using 

Residuals Row-wise soft-thresholding

Group sparsity on

i.e., force consensus among 
classes regarding which 

nodes are outliers

 Joint optimization

 Model outliers as large residuals, captured by nnz entries of sparse vec.  



Testing classification performance
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 Anomalies injected in Cora graph

 Go through each entry                  of    

 With probability          draw a label

 Replace

 For fixed           , accuracy with                improves as false samples are removed
 Less accuracy for                     (no anomalies), only useful samples removed (false alarms)        



Testing anomaly detection performance
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 ROC curve: Probability of detection vs probability of false alarms

 As expected, performance improves as         decreases 
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Research outlook

 Investigate different losses and diverse regularizers 

 Further boost accuracy with nonlinear diffusion models

 Effect reduced complexity and memory requirements via approximations 

 Online AdaDIF for dynamic graphs
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